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Zero-bandwidth approximation (ZBW)

Qualitatively describes the nature of the ground state.

Idea: keep only f0 in the Wilson chain.

Example: Kondo singlet approximated by an AFM state formed  
between the impurity orbital and the f0 orbital.



Zero-kinetic-energy 
approximation



L: number of levels. 

U: number of unblocked levels.

M: number of Cooper pairs. 











Hartree-Fock

Anderson 1961

Newns 1969

requires numerical solution  
of a transcendent equation

Idea: approximate solution using a 
single Slater determinant



Perturbation theory (2nd order)

Horvatić, Zlatić, 1980, 1982

Analytical expressions!

Yosida, Yamada



Dynamic corrections (on top of HF)





Bethe Ansatz

N. Andrei et al., Rev. Mod. Phys. 55, 331 (1983)

A. M. Tsvelick, B. Wiegmann, Adv. Phys. 32, 453 (1983)
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Problem is integrable if the S matrix satisfies the Yang-Baxter relation. 



Alternative methods (simulations): �
Quantum Monte Carlo
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imaginary-time discretization

Suzuki-Trotter decomposition

Monte-Carlo sampling over auxiliary variables with 
Metropolis-Hastings algorithm

Example: Hirsch-Fye QMC algorithm for the Anderson impurity model



Continuous-Time QMC Algorithms
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• no time-discretization errors

• no auxiliary-field decomposition

H = Ha +Hb

CT-HYB expansion:
Hb = Hhyb

Ha = Himp +Hband

The partition function expansion for the hybridization
algorithm now reads (for time-ordered configurations)
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If the coupling to the bath is diagonal in the ‘‘flavor’’ (spin,
site, orbital, etc.) indices j, then ! is a block-diagonal matrix
and Eq. (93) simplifies to
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B. Density-density interactions

We first consider (multiorbital) models with density-
density interactions. In this case, the local Hamiltonian Hloc

commutes with the occupation number operator of each
orbital. We may therefore represent the time evolution of
the impurity by collections of ‘‘segments’’ which represent
time intervals in which an electron of a given flavor resides on
the impurity. An example of such a segment configuration for
a single-orbital model (two spin flavors) is shown in Fig. 8.

Since the local Hamiltonian is diagonal in the occupation
number basis, the contribution of the trace factor can be
computed for each segment configuration. For a model with
n orbitals and a total length Lj of segments in orbital j and a
total overlap Oij between segments of flavor i and j, one
obtains (s is a sign depending on the operator sequence)
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P

n
j
Lje$

P
n
i<j
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except in the trivial case where there are no operators
for certain flavors. In the latter case, several segment

configurations, involving ‘‘full’’ and ‘‘empty’’ lines, contrib-
ute to the trace.

C. Formulation for general interactions

If Hloc is not diagonal in the occupation number basis

defined by the dy$, a separation of flavors, as in the segment
formalism, is no longer possible (see Fig. 9) and the calcu-

lation of wlocðxÞ ¼ Trd½T!e
$"Hloc

Q
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d%ð!$1 Þdy$ð!0$1 Þ( becomes more involved. One strategy, pro-
posed by Werner and Millis (2006), is to represent the

operators d$ and dy$ as matrices in the eigenbasis of Hloc,
because in this representation the time-evolution operators
e$Hloc! become diagonal. The evaluation of the trace factor
thus involves the multiplication of matrices whose size is
equal to the size of the Hilbert space of Hloc. Since the
dimension of the Hilbert space grows exponentially with
the number of flavors, the calculation of the trace factor
becomes the computational bottleneck of the simulation,
and the matrix formalism is therefore restricted to a relatively
small number of flavors ( & 10). The technical part of eval-
uating these traces is described in detail in Sec. X.F.

Haule (2007) observed that conserved quantum numbers
may be exploited to facilitate the calculation of the trace. If
the eigenstates of Hloc are ordered according to conserved
quantum numbers, the evaluation of the trace is reduced to
block-matrix multiplications (see Sec. X.F) of the form
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where O is either a creation or annihilation operator, m
denotes the index of the matrix block, and the sum runs
over those sectors which are compatible with the operator
sequence. With this technique, 3-orbital models or four-site
clusters can be simulated efficiently (Haule and Kotliar,
2007b; Gull et al., 2008b; Park et al., 2008b; Werner
et al., 2008; Chan, 2009). However, since the matrix blocks

FIG. 8 (color online). Segment configuration of a k ¼ 6 order term in hybridization expansion of the single-orbital Anderson model. Upper
line: spin-up orbital; lower line: spin-down orbital; heavy line: orbital occupied; light line: orbital empty. For each orbital, the length of the
black line (occupied orbitals) determines the chemical potential contribution to the weight factor (95). Shaded areas: Regions where both up
and down orbitals are filled, so the impurity is doubly occupied. The length of the shaded area enters into an overall weighting factor for the
potential energy (Hubbard U).

FIG. 9 (color online). A typical term in the expansion (93): Three ‘‘flavors’’ of fermionic creation and annihilation operators (denoted by
filled and empty diamonds, squares, and circles) are placed at times between 0 and ". In the general case, orbital occupation is not conserved
by the local Hamiltonian, so two operators of the same type may follow each other.
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Do NRG and QMC agree?
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Evidence for a �
Quantum Phase Transition
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R. Žitko, J. Mravlje, K. Haule, Phys. Rev. Lett. 108, 066602 (2012)



β = 350

NRG, FDM algorithm

Λ = 1.8

ν

U=1.2, Γ = 0.2,Δ = 0.05



non-crossing approximation


