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** Tteration completed.

Total energy: -2.892022665545651
TKW=1.50877671710845e-05

Memory usage report

after diag: 68304 kB
after recalc: 68304 kB
after split: 68304 kB
after trim: 68304 kB
after trunc: 68304 kB
diag h: 68304 kB

Peak usage: 68304 kB

Timing report
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TUTORIALS 2019.TAR.GZ

Each example directory contains humbered scripts,
grg el run, 2 ploticts
Running these scripts should reproduce (overwrite) the results of
the calculation, post-process them, produce plots, etc.

Important files:
param or param. loop: parameters of the calculation

model . m: model definition
data: input to the C++ part of the code (nrgrun)
td, custom, annotated.dat, *.dat: output files



CONTENTS OF PARAM FILE

fextral

spin=1/2

Jkondo=0. 2

[ param]

symtype=0Q8S symmetry type
discretization=2 discretization scheme: Y, C, Z
Lambda=2 A

fmin=le-6 controls the length of chain
keepenergy=8 ;

B -5000 truncation parameters

model=kondo.m



CONTENTS OF DATA FILE

# Input file for NRG Ljubljana, Rok Zitko, rok.zitko@ijs.si, 2005-2015

# symtype QS

# Using sneg version 1.250

#!8

# Number of channels, impurities, chain sites, subspaces:
1 0 39 4

# SCALE 1.0201394465967895
# Energies (GS energy subtracted, multiplied by 1/SCALE):
-1 2

1

0.1470387215202821

0 1

1

0.

0 3

1

0.19605162869370946

i 2

1

0.1470387215202821

# Irreducible matrix elements for Wilson chains:
£f00O0

4

1 2 0 3
1.224744871391589

1 2 0 )
0.7071067811865475

0 3 -1 2

ik

0 1 -1 2

-1.

# GS energy in absolute units:

e

-0.15000000000000002

# Irreducible matrix elements for other operators:
# Discretization tables:

z

39

0.54528747084262258072

0.41550946829175445321

0.32189917767609217007

0.24026940945817134999
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CONTENTS OF TD
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12711 U n90d = —2.23771le=14
00796984 0.557866 -2.34782e-14
magnetization

<Q"2>
0.49907
0.868445
.15429
.31488
537861
.39344
.39626
I5SBIGT ]
$$31047.83
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S 852
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e e e

e e e

<E>
0.143255
0.965006
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.14416
.97403
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heat capacity

-1.93426
-2.23124
-2.88775
-2.84544
-3.14618
-2.94699
-3.16169
=2:956:21
-3.15444
=2:..9:585
-3.1431
=215959453
-3.12879
-2.95919
=3 L11SS

free energy

- 07758
.19624
RS
- 113239
5::01028
5.0874
- 09998
R
<10 SEE
.10366
10350
- 10329
- LO:2:88
.10205
.10089
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PLOTTING WITH GNUPLOT

#!/bin/bash

gnuplot --persist <<EOF
set termoption enh

set title "Kondo model”
set logscale x

Set format x '10"{%L}"
set xlabel 'Temperature'
set xXrange [le-8:1le-1]
set ylabel 'S(T)/k B'
et tc-S.dat’ with lp title 'impurity entropy ',  lLog(Z)
EQOF



PLOTTING WITH MATPLOTLIB

#!/bin/sh
python <<EOF
# -*- coding: utf-8 -*-

import matplotlib as mpl
mpl.use('agg')

import matplotlib.pyplot as plt
import numpy as np

f = plt.figure()

plt.title("Kondo model", fontsize=12)
plt.xlabel(r'\S$ST/D\S$', fontsize=12)

e label (r' \SS(T)\ [k B]J\$', fontsize=12)
plt.xlim(le-8,1le-1)

PlEixscale('log')

plt.ylim(bottom=0)

plt.tick params(labelsize=12)

pltvtight layout ()

x1,yl = np.loadtxt('td-S.dat', unpack=True)
I = plt.plot(xl,yl, color='black', label='Impurity entropy')

plt.legend()
plt.show()
plt.savefig('entropy.pdf')

EOF



ZERO-BANDWIDTH APPROXIMATION TO SIAM

Exact diagonalisation of a two-site problem using SNEG

snegfermionoperators

nc
number, hubbard, hop

gsbasisvc
matrixrepresentationvc



Schrieffer-Wolff transformation for quantum many-body systems

Sergey Bravyi, David DiVincenzo, Daniel Loss
(Submitted on 3 May 2011)

The Schrieffer-Wolff (SW) method is a version of degenerate perturbation theory in which the low-energy effective Hamiltonian H_{eff}
is obtained from the exact Hamiltonian by a unitary transformation decoupling the low-energy and high-energy subspaces. We give a
self-contained summary of the SW method with a focus on rigorous results. We begin with an exact definition of the SW
transformation in terms of the so-called direct rotation between linear subspaces. From this we obtain elementary proofs of several
important properties of H_{eff} such as the linked cluster theorem. We then study the perturbative version of the SW transformation
obtained from a Taylor series representation of the direct rotation. Our perturbative approach provides a systematic diagram
technique for computing high-order corrections to H_{eff}. We then specialize the SW method to quantum spin lattices with short-
range interactions. We establish unitary equivalence between effective low-energy Hamiltonians obtained using two different versions
of the SW method studied in the literature. Finally, we derive an upper bound on the precision up to which the ground state energy of
the n-th order effective Hamiltonian approximates the exact ground state energy.

Comments: 47 pages, 3 figures

Subjects: Quantum Physics (quant-ph); Statistical Mechanics (cond-mat.stat-mech); Strongly Correlated Electrons (cond-mat.str-el)
Journal reference: Ann. Phys. Vol. 326, No. 10, pp. 2793-2826 (2011)

DOI: 10.1016/j.a0p.2011.06.004

Cite as: arXiv:1105.0675 [quant-ph]

(or arXiv:1105.0675v1 [quant-ph] for this version)



PLEMELJ FORMULA

1 1
= P— +mwd(x)

E 0T T




Sokhotski—Plemelj theorem

From Wikipedia, the free encyclopedia

Not to be confused with Casorati-Sokhotski—Weierstrass theorem.

The Sokhotski-Plemelj theorem (Polish spelling is Sochocki) is a theorem in complex analysis, which helps in evaluating certain
integrals. The real-line version of it (see below) is often used in physics, although rarely referred to by name. The theorem is
named after Julian Sochocki, who proved it in 1868, and Josip Plemelj, who rediscovered it as a main ingredient of his solution of

the Riemann-Hilbert problem in 1908.

Contents [hide]
1 Statement of the theorem
2 Version for the real line
3 Proof of the real version
4 Physics application
5 See also
6 References

Let C be a smooth closed simple curve in the plane, and ¢ an analytic function on C. Then the Cauchy-type integral

1 [ e(Q)d¢

2m c (—=z
defines two analytic functions of z, ¢; inside C and ¢, outside. [c/arification needed] The Sokhotski—Plemelj formulas relate the limiting
boundary values of these two analytic functions at a point zon C and the Cauchy principal value P of the integral:

bi(x) = —p [(LLE L0,
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Proof of the real version |edit

A simple proof is as follows.

b f((l?) b £ b .’132 f(iL')
lim — dxr = Fim lim x)dxr + lim dx.
ces0t J, xLie e—07 Jo m(x? + £2) f(z) e—=0t Jo, 2242 @

For the first term, we note that ;2 , (2) is a nascent delta function, and therefore approaches a Dirac delta function in the limit.
Therefore, the first term equals Fm f0).

For the second term, we note that the factor X /2 + 2) @pproaches 1 for Ixl » &, approaches 0 for Ixl « €, and is exactly symmetric
about 0. Therefore, in the limit, it turns the integral into a Cauchy principal value integral.



KRAMERS-KRONIG TRANSFORMATION
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CAUSALITY AND THE TITCHMARSH THEOREM

Titchmarsh's theorem [edit]

A theorem due to Edward Charles Titchmarsh makes precise the relationship between the boundary values of holomorphic functions in the
upper half-plane and the Hilbert transform (Titchmarsh 1948, Theorem 95). It gives necessary and sufficient conditions for a complex-valued
square-integrable function F(x) on the real line to be the boundary value of a function in the Hardy space HZ(U) of holomorphic functions in

the upper half-plane U.

The theorem states that the following conditions for a complex-valued square-integrable function F: R — C are equivalent:
* F(x) is the limit as z — x of a holomorphic function F(z) in the upper half-plane such that

j | F(z + iy)|2dz < K.

* —Im(F) is the Hilbert transform of Re(F), where Re(F) and Im(F) are real-valued functions with F = Re(F) + i Im(F).
s The Fourier transform f( F) (I) vanishes for x < 0.



Exercise 2: single-impurity Anderson model: impurity Green function,
hybridization function, and self energy

(9 points + 5 bonus points)

The impurity Green function of the single-impurity Anderson model can be written
in the following general form:

1

M ORI OB @

The idea of this exercise is to explore the possible structures of the impurity Green
function using a specific form of the hybridization function and the self energy.

a) Show that any correlation function defined in the upper complex plane can be
represented through its spectral function as

X(z) = /_ z a2

A

w
(2 points).

b) The spectral function of the hybridization function, Aa(w), is supposed to be
of the following form:
Aa(w) = g~ (w/10)%
Calculate (numerically) both real and imaginary part of A(z = w + id) with
0 = 0.01. (4 points).

c) Use the result of b) to calculate the impurity spectral function, A;,,(w), for
various values of e and U = 0. (3 points).

d) The spectral function of the self energy should take the form

As(w) = ywle ™’
Investigate the resulting structures in the impurity Green function for e = 0
and various values of 7. (5 bonus points).



Exercise 3: Lanczos algorithm

(9 points + 4 bonus points)

We consider a symmetric (/V X N)-matrix H with matrix elements H;; = /1 + 1+ .
The starting vector of the Lanczos algorithm is given by |®q) = (1,1,...,1).

a) Calculate the sequence of vectors {|®o), [P1),...,|Py-1)} (M < N) with the
Lanczos algorithm as defined in the lecture (N can be set to 10). (5 points)

b) Show numerically that the vectors |®;) obtained in this way are orthogonal.

To this end, calculate the matrix D;; = (®;|®;). (2 points)
c) Calculate (numerically) the matrix He in the basis {|®;)}: (He)ij =
(®;|H|D;). (2 points)
d) Calculate the matrix elements a, = (1|®,), with the normalized vectors

1®,) = |®,)/(®,|®,) and |i) the actual ground state of H (the eigenvec-
tor with the lowest eigenvalue). Can one tell, from the n-dependence of a,,
whether the Lanczos algorithm converges quickly to the ground state?

(4 bonus points)




Exercise 2: Hamilton matrix of the two-site Anderson model
(6 points)

Consider again (see exercise 2 on sheet 2) the single-impurity Anderson model with
a single bath site only:

Ho=) eflfo+UARFA+VY  (fleo+cbfo) +) edhe,, (2

The basis of the Hilbert space of H,, can be written as:

a) Due to the conservation of the total particle number N and the z-component of
the total spin S,, the Hilbert space can be decomposed into subspaces (N, S,).
Determine the dimensions of these subspaces. (2 points)

b) Calculate (analytically) the matrix elements of the Hamilton matrix for the
subspace (N = 2,5, = 0). (4 points)



Exercise 2: Symmetries

Consider the following two-site model:
Ho =) eflfo+ UL +V Y (fleo+cbfo) +) ecches, (1)

which corresponds to a single-impurity Anderson model with only a single bath site.

a) Show that, for the model eq. (1), the total particle number is conserved,
ie. [Hts,N]_ =0, with N =3Y"_(fif, +cle,). (3 pomts)

b) Show that, for the model eq. (1) , the z-component of the total spin is conserved,
e [His, S:]- =0, with S. = fIfs — fl f, + cler — .. (3 points)

Now consider a tight-binding model on a finite chain with periodic boundary con-
ditions:

Hy, = Z eicle; + Z t; (c Cis1+C +1c,) +ty (chl -+ clcN) : (2)
=1

AT R
1{;‘,

"'f' ‘r.';\“‘& ,u.'— a3 ! :\ AL

¢) Perform the following two transformations:

t'b = th(cz — Ciy C; — CI) )
" = H'(cl - —cl,¢; & —ci,i even) .

R

Under which conditions do we have = H,7?




Exercise 1: single-particle and many-particle spectra

We consider a Hamiltonian of the form

N
H= Ze,-clc,e \

=1

with N = 6 and energies &; = 0.1 - (¢ — 3.5). The many-particle energies of this

system are given by E = S~  n;e;, with n; =0, 1.

a) Write a program which translates the integer j = 0,...,2" — 1 into the bit
pattern (n;,ns,...,ny), with j = 2::1 n; 21, (3 points)

b) With the algorithm of part a), write a program which calculates the many-
particle spectrum {E;} of the Hamiltonian eq. (1).




Exercise 3: single-impurity Anderson model: even/odd basis

(5 points)
left lead right lead

- O+—0+0—@—0—-+—0+0 -~

impurity

The figure shows a sketch of the single-impurity Anderson model, with coupling of
the impurity to left and right ‘leads’, both represented by tight-binding chains. The
Hamiltonian is of the form

H = Himp + Himp—bath + Hbath 3
with the individual parts given by

Huwp = ) efifo + USRI

Himp—bath =V Z Z (f;calo + CItlofa) s

a=l,r o

Hbath — t> > ) (ngcaz—lo+cztz+lacaza) .

a=lr i=1 o

The impurity in this model seems to couple to two ‘channels’. Show that with the
following transformation to an even/odd basis, the impurity only couples to a single
channel (the even channel), with the odd channel decoupled from the impurity:

¢, = 1(c- + Crio)
i \/§ lio rioc)

; 1 ( )
C; = 7= \llic — Crig) -
1T \/§ l CT



Exercise 1: single-particle and many-particle spectra

(10 bonus points)

For a given single-particle spectrum {¢;}, the many-particle energies can be simply
calculated via FE = Zz\:  ni€i, with n; = 0, 1. In this project, you are supposed to
solve the reverse problem: for a given set of many-particle energies { E; }:

e find out whether the many-particle spectrum can be represented at all by a
single-particle spectrum;

e if this is possible, calculate the single-particle spectrum {¢;}.

As a specific example, consider the following two sets of many-particle energies:
{E.H = —2,—-1,0(2),1(2),2,3,
{Ei}» = —2,-1(2),0,1,2(2),3

(The number in brackets indicate the degeneracies). To simplify the calculation,
you can assume that the g; take integer values only.



Exercise 2: logarithmic discretization; broadening

(9 points + 3 bonus points)

Here we consider the semi-elliptic spectral function

2V1—-w? @ |w| <1,
A(w)—{ 0 D |w| > 1.

The idea of this exercise is to perform a logarithmic discretization on A(w) and then
apply different broadening schemes to see how well the original spectral function is
recovered.

a) Calculate the weights a:= and frequencies w: of the discretized spectral function
Ay4(w) for a discretization parameter A = 2 (for the notation, see Sec. 2.2.5 in
the script). (2 points)

b) For the broadening function, use Lorentzians with fixed width b to obtain the
broadenend spectral function Ay (w). (3 points)

c) Now set the b of the Lorentzians to b, = a|w;; |, with a of the order of 0.5.
What happens in the limit w — 0 and N — oo? (4 points)

d) Finally, investigate the structures of the broadened spectral function Ay (w)
using logarithmic Gaussians as broadening functions with b = 0.3,0.4,0.5,0.6
(as above, see Sec. 2.2.5 in the script for the notation). (3 bonus points)



Exercise 3: logarithmic discretization of the single-impurity Anderson
model

(4 points)

The conduction electron part of the Hamiltionian, Hy.., (see eq. (2) in exercise 2),
can be written in the form

Hpath = z ( Tal npe + & bj;po-bnpa)

npo
+ Y (0 ®.2)al e — 07 (5, P)blobups )
n,p#p' .o

(5)

with the definitions of the operators a,,, and by, given in the lecture. For a constant
hybridization function A(w) = A we can simply set the dispersion as g(¢) = €. Show
that in this case the quantities £~ and o> are given by:

& = i%A‘“(l +A7),

1-A1t A 27i(p’ — p)
+ AN
an(pip)— 21 pl_pexp[ 1—A"1




Exercise 4: flow diagrams for the tight-binding model

(5 points + 3 bonus points)
Consider the following quantum impurity model defined on a chain with NV + 1 sites:

N-1

stf?f+V(chl+c{f) +Ztn (c;cn_l-{-cilﬂcn) . (6)

This model corresponds to a tight-binding model of spinless fermions with a special
choice of parameters, in particular, the hoppings ¢, are assumed to fall off exponen-
tially: ¢, = A~™? with A = 2. As the Hamiltonian eq. (6) is non-interacting, it
can be diagonalized via an orthogonal transformation (see Sec. 2.1 in the lecture).
This gives the single-particle spectrum from which the many-particle energies can
be constructed.

The lowest-lying many-particle energies Enx(r) (r = 1,...,Tmax and we assume
En(r) < Ex(r + 1)) for a chain with N bath sites can now be used to plot the
energy-level flow diagram, i.e. AN2Ey(r) as a function of N.

a) Plot the five (rn. = 5) lowest-lying many-particle energies in this way for
e=0,V =0.1, and N in the range N = 3,...,20. (5 points).

b) Investigate the effect of the value of € on the flow diagram by varying € in the
range [-2,2]. (3 bonus points).



