

Spin-spiral structure in ZnCr₂Se₄ across the whole field-temperature phase diagram

A. S. Cameron¹, Y. V. Tymoshenko¹, P. Y. Portnichenko¹, J. Gavilano², V. Tsurkan³, and D. S. Inosov¹

¹Institut für Festkörperphysik, TU Dresden, HelmholtzstraSSe 10, D-01069 Dresden, Germany Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

³University of Augsburg, 86135 Augsburg, Germany

Material properties

• Magnetically frustrated spinel.

• Curie temperature: $T_{\rm C} = 21$ K.

• Helical pitch: $\lambda_h = 22.4 \text{ Å}$.

• Incommensurate spin spiral order.

• Propagation vector: $k_{\rm h} = 0.28 \,\text{\AA}^{-1}$.

• Magnetic Cr³⁺ ions.

Fig. 1. Co-aligned single crystal mosaic of ZnCr₂Se₄.

Fig. 2. (a) Spinel structure of ZnCr_2Se_4 [1]. Arrows indicate displacements of Se^{2-} ions in the orthorhombic phase below about 21 K (T_C). (b) Schematic representation of the magnetic structure of ZnCr₂Se₄ (only the Cr atoms displayed) [4].

0

Motivation

Fig. 3. (a) Relative change of the attenuation α vs magnetic field at different temperatures in ZnCr₂Se₄.

Fig. 4. Schematic of a SANS instrument [2].

Experiment

Diffracted neutrons

Small angle neutron scattering (SANS) at the SANS-I diffractometer, PSI, Switzerland.

Sample mass: ~ 1 g, mounted on an Al plate.

11 T cryomagnet with 2 K base temperature.

Magnetic field parallel to either (001) or (110), perpendicular to the neutron beam.

Fig. 5. Magnetic-field dependence of the low-temperature magnetic neutron diffraction patterns in $ZnCr_2Se_4$. Typical neutron diffraction patterns are shown from each of the distinct phases and orientations observed during the experiment. The data demonstrate two phase transitions across B_{C1} and B_{C2} which are shown on phase diagram (Fig. 8).

Fig. 6. Magnetic-field and temperature dependence of the magnetic Bragg intensity in $ZnCr_2Se_4$, obtained by fitting the neutron-diffraction data

Data analysis

Fig. 7. Magnetic-field and temperature dependence of the magnetic propagation vector in ZnCr₂Se₄, obtained by fitting the neutron-diffraction data.

Conclusions

[1] M. Hidaka et al., phys. stat. sol. (b) 236, 9 (2003). [2] A. Cameron, PhD thesis, University of Birmingham (2013). [3] V. Felea et al., Phys. Rev. B 86, 104420 (2012). [4] F. Yokaichiya et al., Phys. Rev. B 79, 064423 (2009).

> Fig. 8. Phase diagram of $ZnCr_2Se_4$ from a combination of ultrasound and magnetization measurements, reproduced from Ref. [3], onto which we have superimposed transition points from our SANS data.

- Magnetic Bragg peaks corresponding to long-range helical order are found below H_{C2} .
- The field H_{C1} corresponds to domain selection between different directions of the spin spiral.
- No anisotropy of H_{C1} or H_{C2} was observed for the two measured field directions.
- No incommensurate magnetic peaks were seen in the high-field ("spin-nematic") phase.
- We observed a weak dependence of the propagation vector (helical pitch) on magnetic field and temperature that does not exceed 5%.