A new molecular beam epitaxy system for the growth of heavy termion thin films
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and validate our approach. FIGURE 3: Photograph of the used MBE system (Compact21, matching of Germanium and YbRhsSis on the right.
We have set up an MBE system equipped with a stan- Riber). It consists of two growth chambers, one for III-V semi-

dard evaporation cell for Yb and two electron beam evap- conductors (right) and one for intermetallic compounds (left). In e For successful growth in an MBE setup the lattices of the sub-
orators for Rh and Si, and have succeeded to grow first the center, there is a load and storage chamber. strate and the desired compound typically have to be matched to

: : ’ within 2% of each other. The base plane of YbRh9Siy has an
YbRhy 51, thin films on Ge. excellent lattice match to the face centered atoms in the Germa-

nium unit cell.
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First results
e Establish film thickness or superlattice period as quasi-continuous e Space group: I4/mmm

tuning parameter through the global phase diagram of heavy e Tetragonal ThCr,Sis-type structure
fermion compounds. — T ———TT T .

e Cubic diamond structure
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Ik e YbRhySiy exhibits a quantum critical point at a magnetic field of T (K)
B, = 60m'T" perpendicular to the c-axis, separating an antiferro- . o
FIGURE 1: Global zero-temperature phase diagram of antifer- magnetic phase below from a paramagnetic phase above Bc. T FIG.URE 7:.Tempe.rature—dependent clectrical reSIStIVI,t Y> MO
o , P P g , , marks the energy scale associated with the Kondo destruction. malized to its maximum, of two MBE grown YbRh28Si12 films
romagnetic heavy fermion compounds [3]. The vertical axis and a bulk sample for comparison. Insert: Photograph of
represents the magnetic frustration parameter G, the horizontal V1 R e e e L MBE film2 contacted by wire bonding.
axis the Kondo coupling constant Jz. The thick lines repre- " FWHM YbRh_Si. 1
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e Perform microwave experiments to study charge and spin dynam- ' '- x + pB) 5 l, #1
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ics near the quantum critical point. Instead of coupling the investi- i ] BT LI S T (R j= e _A |
gated material to a superconducting resonator, it will be possible to 0.0 0] BO.(ZT) s s ] | N YbRh,Sis
manufacture resonators out of the heavy fermion compound itself 4 — Ge substrate
and 1nvestigate the quality factor of these devices. FIGURE 5: Temperature-magnetic field phase diagram of 10 : 3'0 : 5'0 : 7'0 - 30
YbRh5S15 [1,8]. 20 (deg.)

FIGURE 8: X-ray data of MBE film2 confirming that the film
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Outlook

FIGURE 2: Resonator structure used in microwave experi-
ments [6].
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e Investigate the properties of molecular beam epitaxy grown heavy
fermion compounds under positive and negative strain through lat-
tice mismatching with respect to different substrates.

e Investigation of thickness dependence of electrical transport

e Inclusion of films in microwave cavity
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