
Is spin and charge degree of freedom

effectively decoupled

in the 2D Hubbard model?

Krzysztof Wohlfeld

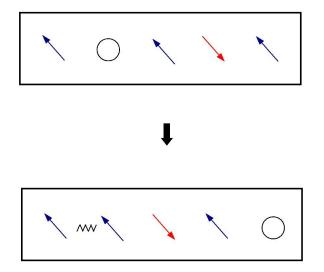
Papers / collaborators / institutions

Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering

Nature Communications **5**, 3314 (2014)

C. J. Jia, E. A. Nowadnick, K. Wohlfeld, C.-C. Chen, S. Johnston, T. Tohyama, B. Moritz, and T. P. Devereaux

Origin of strong dispersion in Hubbard insulators

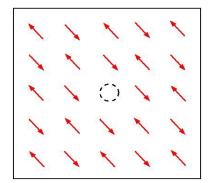

Phyical. Review B 92, 075119 (2015)

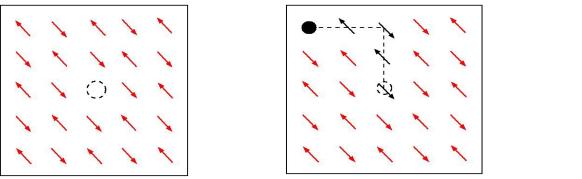
Y. Wang, K. Wohlfeld, B. Moritz, C.J. Jia, M. van Veenendaal, K. Wu, C.-C. Chen, and T. P. Devereaux

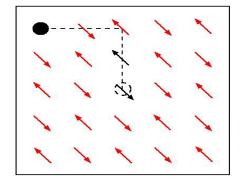
Motivation: separation of spin and charge in 1D

Putting 1 hole into the <u>**1D**</u> antiferromagnet (=ground state of the undoped 1D Hubbard model):

 \rightarrow hole (~holon) + domain wall (~spinon) separate


→ spin-charge separation [T. Giamarchi, Quantum Physics in One Dimension (2004)]

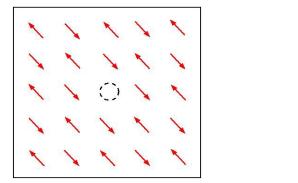

 \rightarrow also seen in ARPES on cuprates [C. Kim *et al.*, PRL 77, 4054 (1996)]

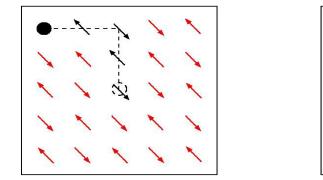

→ cf. spin-orbital separation story [J. Schlappa *et al.*, Nature 485, 82 (2012)]

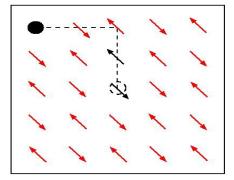
Motivation: confinement of spin and charge in 2D

Putting 1 hole into the <u>2D</u> antiferromagnet (=ground state of the undoped 2D Hubbard model):

 \rightarrow hole (~holon) excites collective magnetic excitations (~magnons) when moving


 \rightarrow not only spin and charge does *not* separate but even...


 \rightarrow ...holon motion hindered by magnons = spin polaron [G. Martinez & P. Horsch, PRB 44, 317 (1991)]

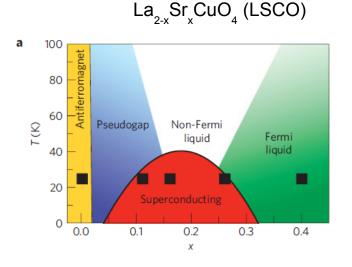

→ also seen in a number of ARPES on cuprates [A. Damascelli, Z. Hussain, & Z.-X. Shen, RMP 75, 473 (2003)]

Motivation: confinement of spin and charge in 2D

Putting 1 hole into the <u>2D</u> antiferromagnet (=ground state of the undoped 2D Hubbard model):

 \rightarrow hole (~holon) excites collective magnetic excitations (~magnons) when moving

 \rightarrow not only spin and charge does *not* separate but even...

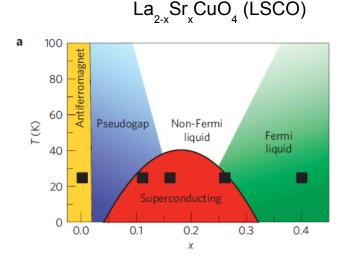

 \rightarrow ...holon motion hindered by magnons = spin polaron [G. Martinez & P. Horsch, PRB 44, 317 (1991)]

But is this the whole story?

→ also seen in a number of ARPES on cuprates [A. Damascelli, Z. Hussain, & Z.-X. Shen, RMP 75, 473 (2003)]

Outline

- 1. Persistence of spin excitations (in doped cuprates / 2D Hubbard model):
 - experiment
 - theory
- 2. Origin of strong dispersion of a hole (in undoped cuprates / 2D Hubbard model):
 - experiment
 - theory
- 3. Conclusions: what connects these 2 stories?

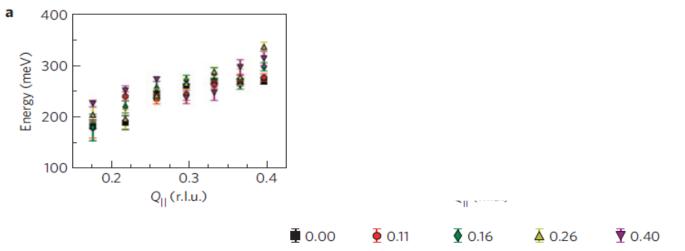


 \rightarrow Phase diagram of LSCO:

antiferromagnet (AF) and superconductivity (SC)

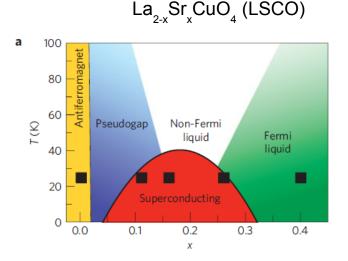
 \rightarrow "Magnons" measured by RIXS in LSCO

M. Le Tacon et al, Nature Phys. 7, 725-730 (2011); M. P. M. Dean et al., Nature Materials 12, 1019-2023 (2013); M. Le Tacon et al., Phys. Rev. B 88, 020501(R) (2013);



 \rightarrow Phase diagram of LSCO:

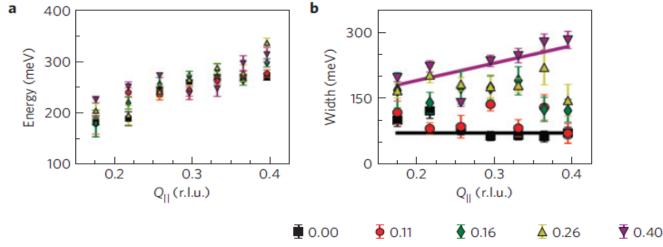
antiferromagnet (AF) and superconductivity (SC)


 \rightarrow "Magnons" measured by RIXS in LSCO

 \rightarrow Lack of changes of dispersion upon doping

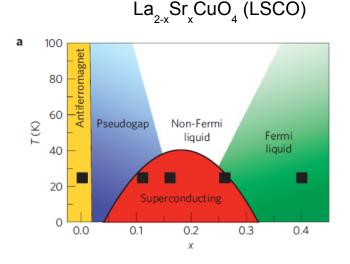
M. Le Tacon et al, Nature Phys. 7, 725-730 (2011); M. P. M. Dean et al., Nature Materials 12, 1019-2023 (2013); M. Le Tacon et al., Phys. Rev. B 88, 020501(R) (2013);

M. P. M. Dean et al., Phys. Rev. Lett. 110, 147001 (2013); M. Guarise et al., Nature Communications 5, 5760 (2014).



 \rightarrow Phase diagram of LSCO:

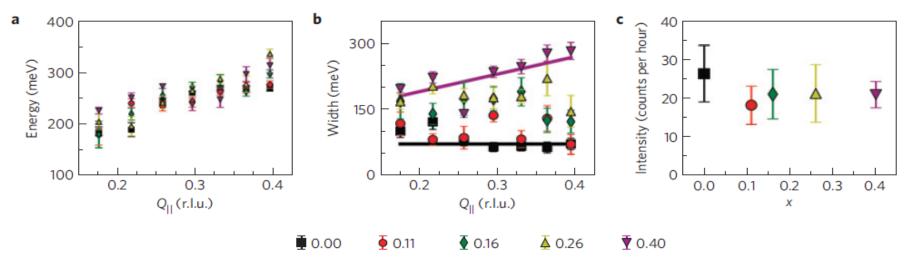
antiferromagnet (AF) and superconductivity (SC)


 \rightarrow "Magnons" measured by RIXS in LSCO

- \rightarrow Lack of changes of dispersion upon doping
- \rightarrow Increase in FWHM of "magnons" upon doping

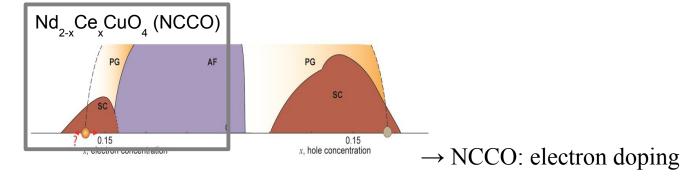
M. Le Tacon et al, Nature Phys. 7, 725-730 (2011); M. P. M. Dean et al., Nature Materials 12, 1019-2023 (2013); M. Le Tacon et al., Phys. Rev. B 88, 020501(R) (2013);

M. P. M. Dean et al., Phys. Rev. Lett. 110, 147001 (2013); M. Guarise et al., Nature Communications 5, 5760 (2014).

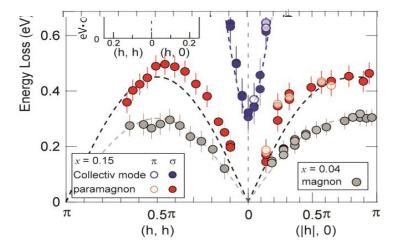

 \rightarrow Phase diagram of LSCO:

antiferromagnet (AF) and superconductivity (SC)

 \rightarrow "Magnons" measured by RIXS in LSCO

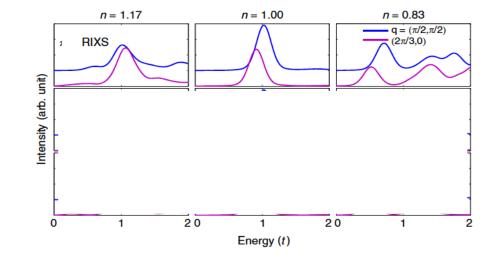

- \rightarrow Lack of changes of dispersion upon doping
- → Increase in FWHM of "magnons" upon doping

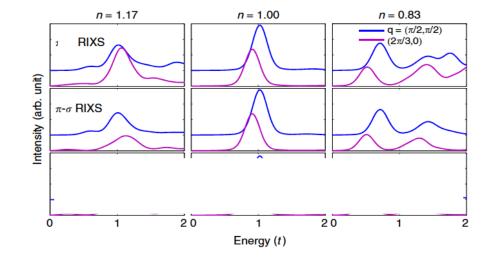
 \rightarrow Small changes in the intensities of "magnons"


M. Le Tacon et al, Nature Phys. 7, 725-730 (2011); M. P. M. Dean et al., Nature Materials 12, 1019-2023 (2013); M. Le Tacon et al., Phys. Rev. B 88, 020501(R) (2013);

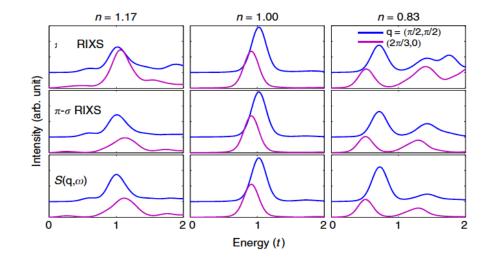
M. P. M. Dean et al., Phys. Rev. Lett. 110, 147001 (2013); M. Guarise et al., Nature Communications 5, 5760 (2014).

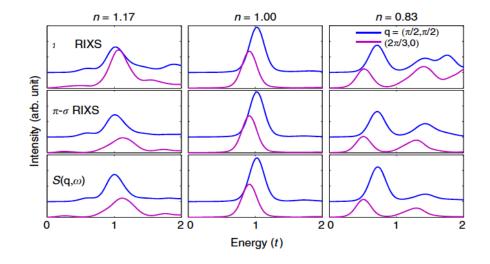
- \rightarrow upon doping: robust antiferromagnet (AF)
- \rightarrow "magnon" velocity... increases with doping

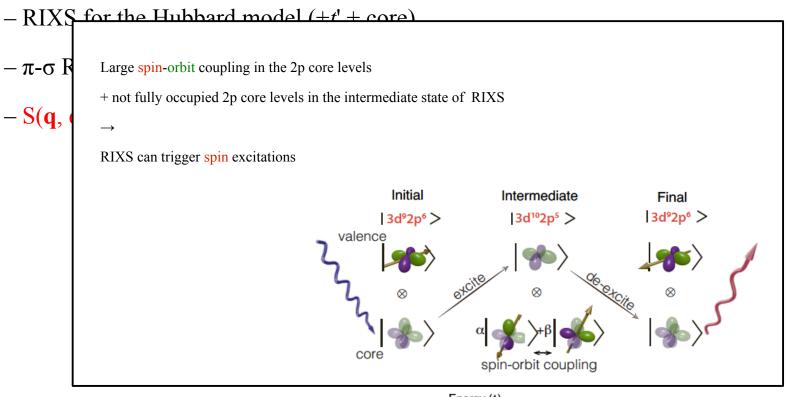

[magnon energy for $q \sim (0, \pi)$ increases]


W. S. Lee et al, Nature Physics 10, 883 (2014); K. Ishii et al., Nature Communications 5, 3714 (2014)

Exact diagonalization for 3 doping levels:

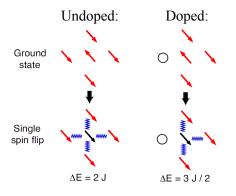

- RIXS for the Hubbard model (+t' + core)


- RIXS for the Hubbard model (+t' + core)
- $-\pi$ - σ RIXS for the Hubbard model (+ *t*' + core)

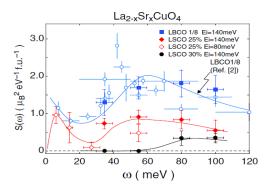

- RIXS for the Hubbard model (+t' + core)
- $-\pi$ - σ RIXS for the Hubbard model (+ *t*' + core)
- $-S(\mathbf{q}, \omega)$, i.e. spin dynamical structure factor, for the Hubbard model (+*t*')

- RIXS for the Hubbard model (+t' + core)
- $-\pi$ - σ RIXS for the Hubbard model (+ *t*' + core)
- $-S(\mathbf{q}, \omega)$ for the Hubbard model (+*t*')

- \rightarrow Line shapes: π-σ RIXS = S(q, ω) upon doping
- \rightarrow Line shapes: <u>low energy part of full</u> RIXS ~ S(q, ω)



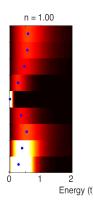
Energy (t)


- \rightarrow Line shapes: π-σ RIXS = S(q, ω) upon doping
- \rightarrow Line shapes: <u>low energy part of full</u> RIXS ~ S(q, ω)

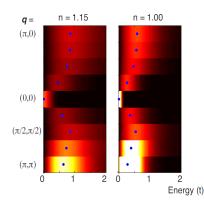
These results are counterintuitive and relatively novel:

(1) "Magnon" energy: should decrease with doping?!

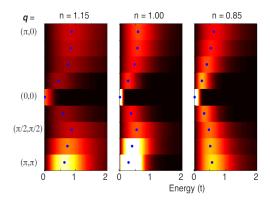
(2) "Magnon" spectral weight: should decrease with doping?!

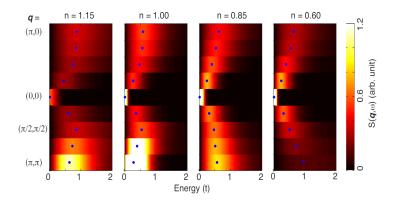


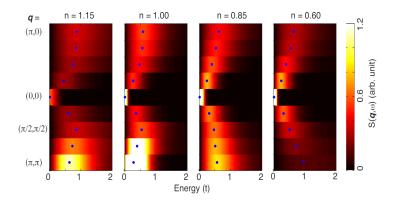
 $S(q, \omega)$, i. e. spin dynamical structure factor measured by Inelastic Neutron Scattering


[PRL 98, 247003 (2007)]

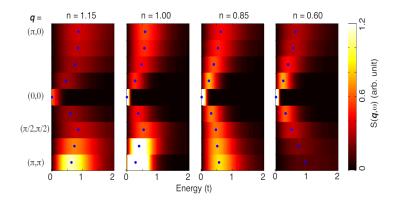
- (A) Can the <u>spectral weights</u> of "magnons" be persistent upon doping?
- (B) Can the **<u>energy</u>** of "magnons" be persistent upon doping?


- (A) Can the <u>spectral weights</u> of "magnons" be persistent upon doping?
- (B) Can the <u>energy</u> of "magnons" be persistent upon doping?
- \rightarrow Calculations: S(q, ω) from the Hubbard model using DQMC


- (A) Can the <u>spectral weights</u> of "magnons" be persistent upon doping?
- (B) Can the <u>energy</u> of "magnons" be persistent upon doping?
- \rightarrow Calculations: S(q, ω) from the Hubbard model using DQMC


- (A) Can the <u>spectral weights</u> of "magnons" be persistent upon doping?
- (B) Can the <u>energy</u> of "magnons" be persistent upon doping?
- \rightarrow Calculations: S(q, ω) from the Hubbard model using DQMC

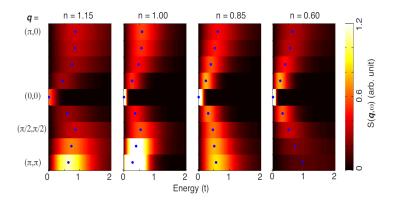
- (A) Can the <u>spectral weights</u> of "magnons" be persistent upon doping?
- (B) Can the **<u>energy</u>** of "magnons" be persistent upon doping?
- \rightarrow Calculations: S(q, ω) from the Hubbard model using DQMC



- (A) Can the <u>spectral weights</u> of "magnons" be persistent upon doping?
- (B) Can the **<u>energy</u>** of "magnons" be persistent upon doping?
- \rightarrow Calculations: S(q, ω) from the Hubbard model using DQMC

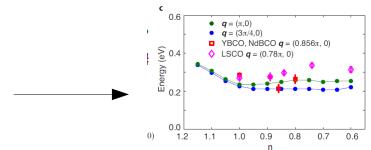
 \rightarrow Questions:

- (A) Can the <u>spectral weights</u> of "magnons" be persistent upon doping?
- (B) Can the <u>energy</u> of "magnons" be persistent upon doping?
- \rightarrow Calculations: S(q, ω) from the Hubbard model using DQMC

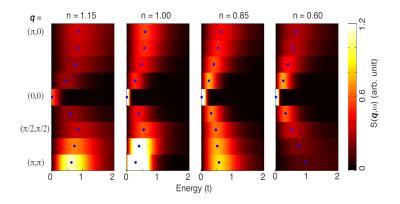


 \rightarrow Answers:

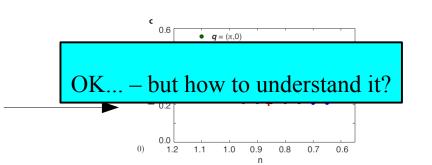
ad. (A) yes (in parts of the Brillouin zone)ad. (B) yes (in parts of the Brillouin zone)


 \rightarrow Questions:

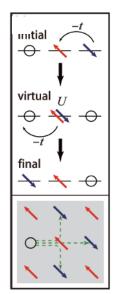
- (A) Can the **spectral weights** of "magnons" be persistent upon doping?
- (B) Can the <u>energy</u> of "magnons" be persistent upon doping?
- \rightarrow Calculations: **S**(**q**, ω) from the Hubbard model using DQMC


 \rightarrow Answers:

ad. (A) yes (in parts of the Brillouin zone)ad. (B) yes (in parts of the Brillouin zone)

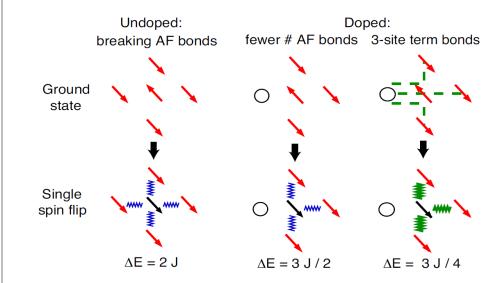

 \rightarrow Questions:

- (A) Can the **spectral weights** of "magnons" be persistent upon doping?
- (B) Can the **<u>energy</u>** of "magnons" be persistent upon doping?
- \rightarrow Calculations: **S**(**q**, ω) from the Hubbard model using DQMC


 \rightarrow Answers:

ad. (A) yes (in parts of the Brillouin zone)ad. (B) yes (in parts of the Brillouin zone)

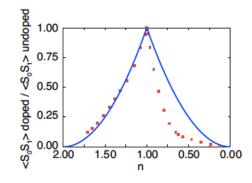
(A) Introducing the "three-site" terms

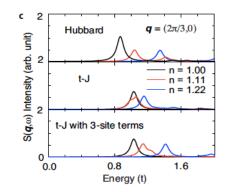

(often neglected but *a priori* present in *t-J*)

$$\mathcal{H}_{3s} = -\frac{J_{3s}}{4} \sum_{\substack{\langle \mathbf{i}, \mathbf{j} \rangle, \langle \mathbf{i}, \mathbf{j}' \rangle \\ \mathbf{j} \neq \mathbf{j}', \sigma}} \left(\tilde{c}^{\dagger}_{\mathbf{j}'\sigma} \tilde{n}_{\mathbf{i}\bar{\sigma}} \tilde{c}_{\mathbf{j}\sigma} + \tilde{c}^{\dagger}_{\mathbf{j}'\sigma} \tilde{c}^{\dagger}_{\mathbf{i}\bar{\sigma}} \tilde{c}_{\mathbf{i}\sigma} \tilde{c}_{\mathbf{j}\bar{\sigma}} \right)$$

(B) These terms are to a large extent

responsible for the lack of softening of "magnons"


Verifying that the 3-site terms are responsible for the persistence of "magnons":

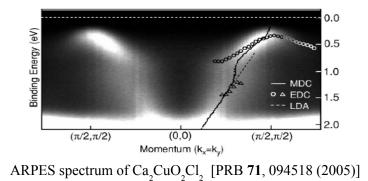

(A) Can such a 'static' picture apply to our situation?

 \rightarrow Yes: on the electron-doped side (hole-doped side: more complex...)

(B) Do the 3-site terms support the hardening on the el-doped side?

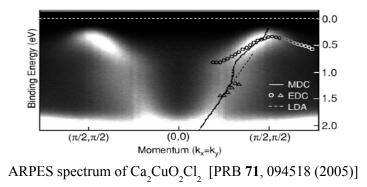
 \rightarrow Yes, they seem to play a crucial role in hardening

1. Persistence of spin excitations: conclusions

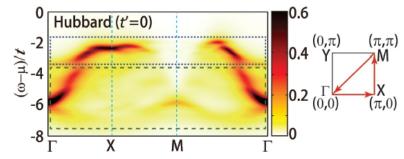

Conclusions:

- (1) "Magnons" survive doping in some parts of $q-\omega$ phase space
- (2) 3-site terms are important

What are the consequences of these findings for the electronic properties of cuprates?


2. Origin of strong dispersion of a hole: experiment

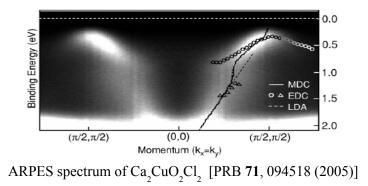
Basic features found in ARPES spectra on undoped cuprates...



2. Origin of strong dispersion of a hole: experiment

Basic features found in ARPES spectra on undoped cuprates...

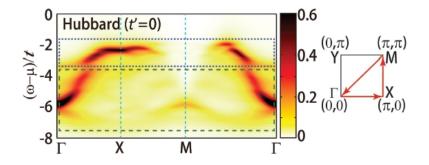
... can well agree with the spectral function of the undoped Hubbard model



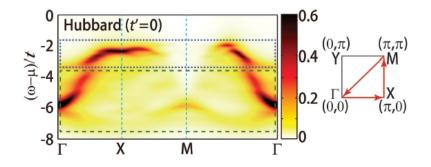
Cluster perturbation theory (CPT) + exact diagonalization (ED) for the Hubbard model

[for more on the method, see PRL 84, 522 (2000)]

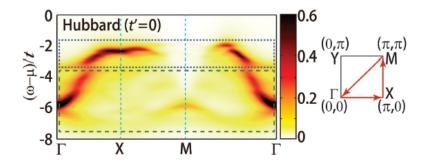
2. Origin of strong dispersion of a hole: experiment


Basic features found in ARPES spectra on undoped cuprates...

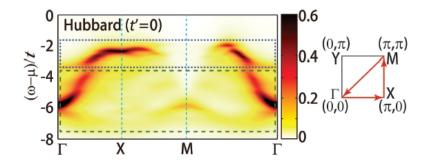
... can well agree with the spectral function of the undoped Hubbard model



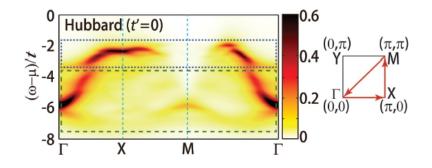
\rightarrow Hubbard spectrum:


 \rightarrow Understanding spectral function of undoped Hubbard:

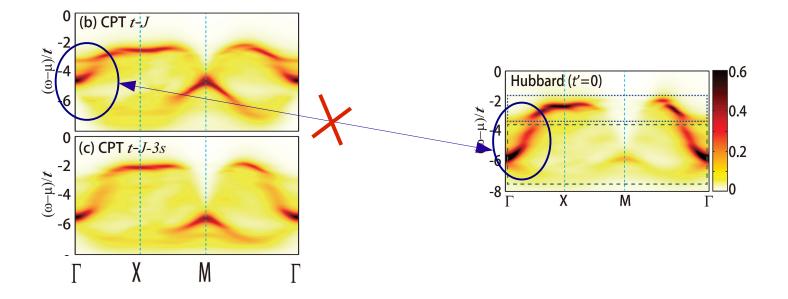
\rightarrow Hubbard spectrum:


- \rightarrow Understanding spectral function of undoped Hubbard:
 - low binding energy: spin polaron

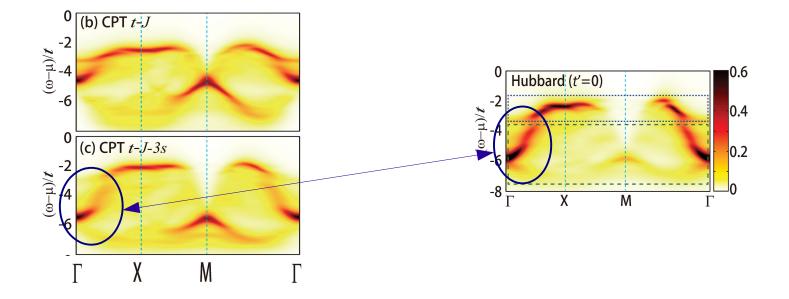
\rightarrow Hubbard spectrum:


- \rightarrow Understanding spectral function of undoped Hubbard:
 - low binding energy: spin polaron \rightarrow OK

\rightarrow Hubbard spectrum:

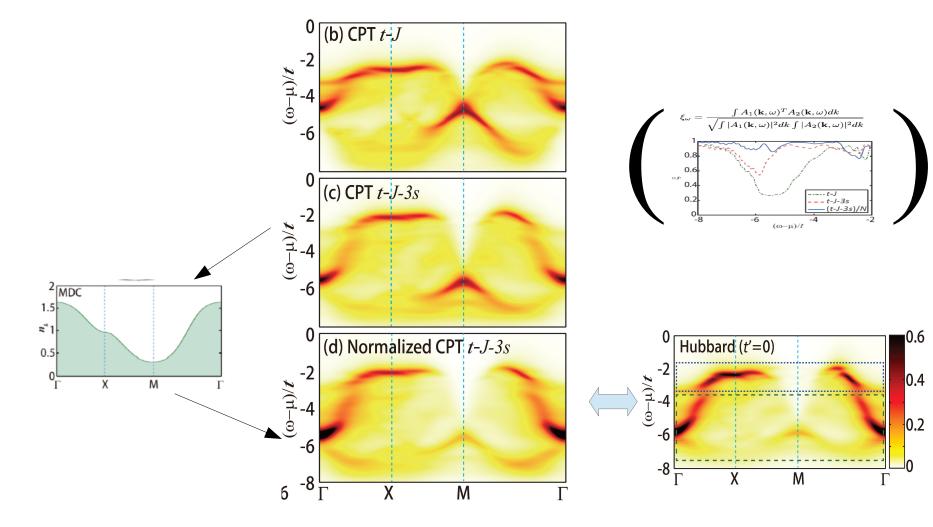

- \rightarrow Understanding spectral function of undoped Hubbard:
 - low binding energy: spin polaron
 - high binding energy: SDW? spin-charge separation? *t*-physics?

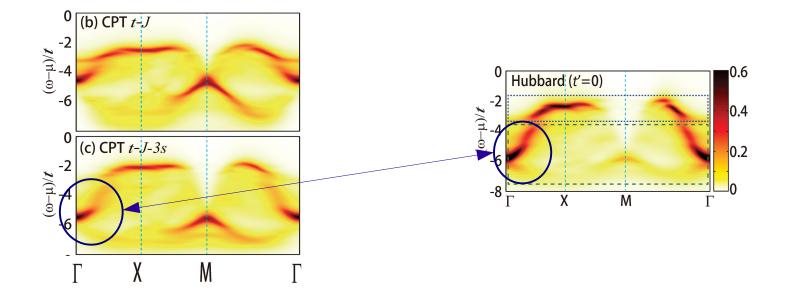
\rightarrow Hubbard spectrum:



- \rightarrow Understanding spectral function of undoped Hubbard:
 - low binding energy: spin polaron
 - high binding energy: SDW? spin-charge separation? *t*-physics?
 - why at all high and low binding energy ("waterfall")?

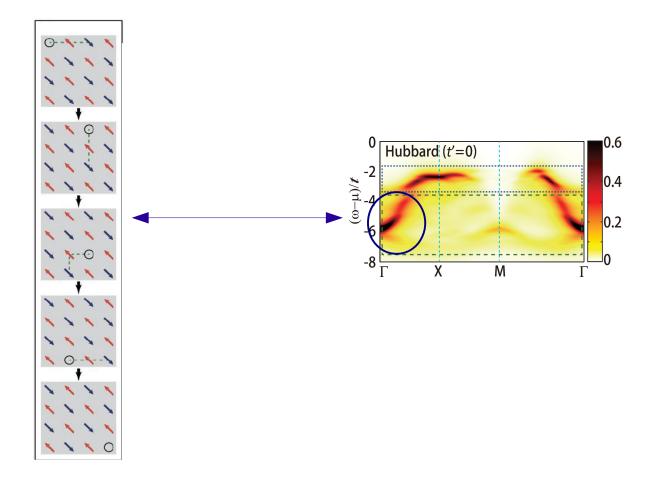
In fact: <u>*t*-J</u> model does <u>not</u> reproduce the <u>Hubbard</u> spectrum:


But *t-J-3-site* model basically reproduces the <u>Hubbard</u> model:


(BTW: different spectral weight sum rules \rightarrow the remaining differences between these models)

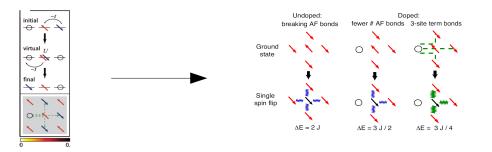
Intermezzo: detailed comparison of the models

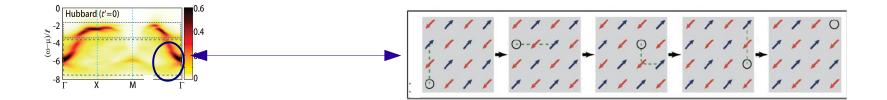
Perfect agreement between *t-J-3s* and Hubbard after 'normalization'



<u>3-site</u> terms responsible for the onset of the high binding energy part of the spectrum...

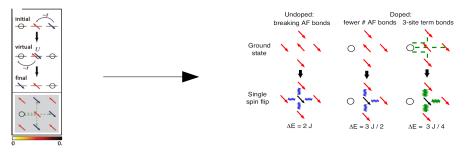
... and for the apparent dispersion


3-site terms \rightarrow strong dispersion in the high binding energy part of the spectrum...

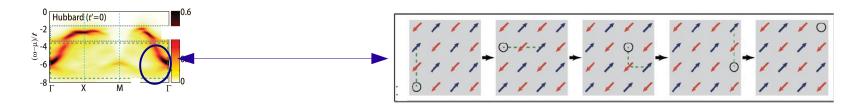

... which was also verified in detail using SCBA and is the main conclusion of 2.

3. Conclusions

1. 3-site terms \rightarrow persistence of magnetic excitations upon doping the cuprates:



2. 3-site terms \rightarrow strong dispersion of a hole in the undoped cuprates:

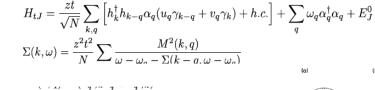


3. Conclusions

1. 3-site terms \rightarrow persistence of magnetic excitations upon doping the cuprates:

2. 3-site terms \rightarrow strong dispersion of a hole in the undoped cuprates:

- 3. What connects these 2 stories:
 - \rightarrow 3-site terms play an important role in the cuprate / 2D Hubbard physics
 - \rightarrow 2 sides of the same phenomenon =

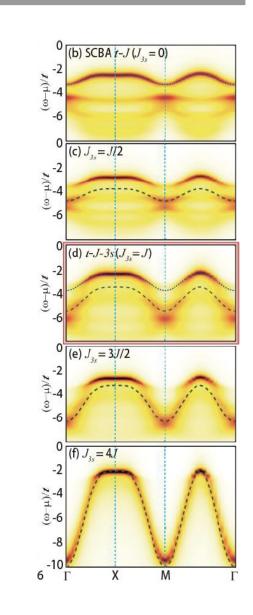

holes & "magnons" are not "fighting with each other" (in some part of $q-\omega$ space)

Appendix: 3-site terms \rightarrow dispersion in the spectrum

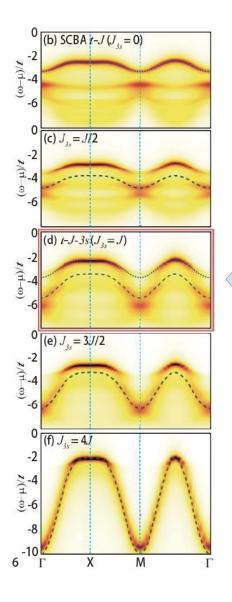
But do we observe a real

dispersion?

- \rightarrow use another method SCBA
 - Self-Consistent Born Approximation (SCBA)
 - Linear Spin Wave (LSW) theory
 - Polaronic Hamiltonian and Self-consistent Bron approximation



Sénéchal *et al. Phys. Rev. Lett.* **84**, 522 (2000) Martinez *et al. Phys. Rev. B* **44**, 317 (1991)

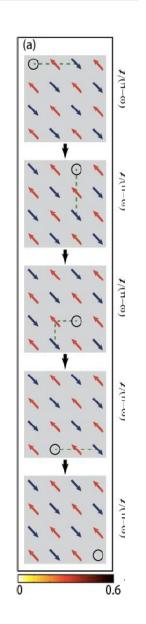

 \rightarrow indeed – 'dispersion' survives

 \rightarrow tune 3-site terms

 \rightarrow indeed – it is a dispersion

Appendix: 3-site terms \rightarrow dispersion in the spectrum

Finally:

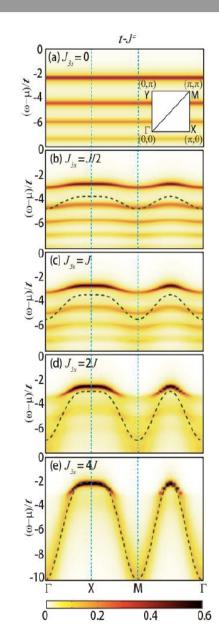

→ this dispersion is *not* renormalized by coupling to magnons:

 $\varepsilon_{\mathbf{k}}^{\text{IASH}} = -\frac{U}{2} - \frac{J_{3s}}{2} \left[\cos 2k_x + \cos 2k_y + 4\cos k_x \cos k_y \right].$

 \rightarrow so the hole moves as in this cartoon

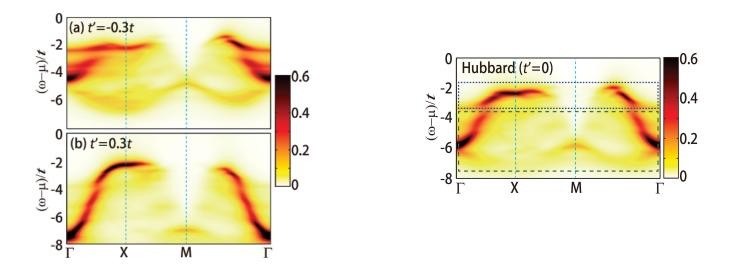
 \rightarrow for experts: if bosons were immobile,

this would be different



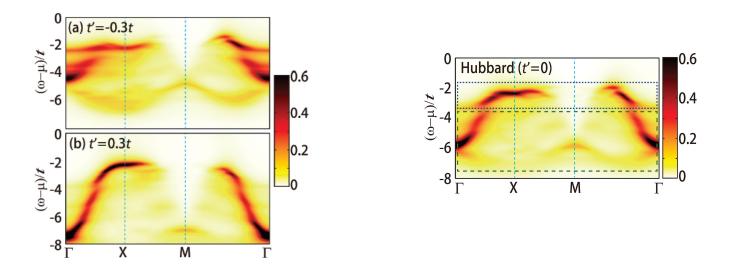
Appendix: 3-site terms \rightarrow dispersion in the spectrum

- If magnons immobile (t-J'Ising' model),
- free dispersion due to 3-site strongly renormalized:


- \rightarrow similar to the story of the orbital model
 - [cf. PRL 100, 066403 (2008); PRB 78, 214423 (2008)]

→ this would be the same for any polaronic model:
bosons immobile → free fermionic dispersion renormalized
bosons dispersive → free fermionic dispersion shows up freely

Appendix: insight from tuning *t*'


 \rightarrow let us add *t*':

- \rightarrow indeed: low and high binding features separate
- \rightarrow low binding part little affected by *t*'
- \rightarrow high binding part: huge changes with *t*'

Appendix: insight from tuning *t*'

 \rightarrow let us add *t*':

 \rightarrow high binding part: huge changes with *t*'

 \rightarrow high binding feature due to NNN hopping?

 \rightarrow but can this happen even when *t*'=0?