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Putting 1 hole into the 1D antiferromagnet (=ground state of the undoped 1D Hubbard model): 

→ hole (~holon) + domain wall (~spinon) separate

→ spin-charge separation [T. Giamarchi, Quantum Physics in One Dimension (2004)]

→ also seen in ARPES on cuprates [C. Kim et al., PRL 77, 4054 (1996)]

→ cf. spin-orbital separation story [J. Schlappa et al., Nature 485, 82 (2012)]

Motivation: separation of spin and charge in 1D 



Motivation: confinement of spin and charge in 2D 

Putting 1 hole into the 2D antiferromagnet (=ground state of the undoped 2D Hubbard model): 

→ hole (~holon) excites collective magnetic excitations (~magnons) when moving

→ not only spin and charge does not separate but even...

→ …holon motion hindered by magnons = spin polaron [G. Martinez & P. Horsch, PRB 44, 317 (1991)]

→ also seen in a number of ARPES on cuprates [A. Damascelli, Z. Hussain, & Z.-X. Shen, RMP 75, 473 (2003)] 



Motivation: confinement of spin and charge in 2D 

Putting 1 hole into the 2D antiferromagnet (=ground state of the undoped 2D Hubbard model): 

→ hole (~holon) excites collective magnetic excitations (~magnons) when moving

→ not only spin and charge does not separate but even...

→ …holon motion hindered by magnons = spin polaron [G. Martinez & P. Horsch, PRB 44, 317 (1991)]

→ also seen in a number of ARPES on cuprates [A. Damascelli, Z. Hussain, & Z.-X. Shen, RMP 75, 473 (2003)] 

But is this the whole story?



3. Wzbudzenia spinowe w domieszkowanych tlenkach miedzi

1. Persistence of spin excitations (in doped cuprates / 2D Hubbard model):

– experiment

– theory

2. Origin of strong dispersion of a hole (in undoped cuprates / 2D Hubbard model):

– experiment

– theory

3. Conclusions: what connects these 2 stories?

OutlineOutline



3. Wzbudzenia spinowe w domieszkowanych tlenkach miedzi
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 (LSCO) → Phase diagram of LSCO: 

     antiferromagnet (AF) and superconductivity (SC)

→ “Magnons” measured by RIXS in LSCO

M. Le Tacon et al, Nature Phys. 7, 725-730 (2011); M. P. M. Dean et al., Nature Materials 12, 1019-2023 (2013);  M. Le Tacon et al., Phys. Rev. B 88, 020501(R) (2013);

M. P. M. Dean et al., Phys. Rev. Lett. 110, 147001 (2013); M. Guarise et al., Nature Communications 5, 5760 (2014).
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 (LSCO) → Phase diagram of LSCO: 

     antiferromagnet (AF) and superconductivity (SC)

→ “Magnons” measured by RIXS in LSCO

→ Lack of changes of dispersion upon doping

→ Increase in FWHM of  “magnons” upon doping

→ Small changes in the intensities of  “magnons” 
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W. S. Lee et al, Nature Physics 10, 883 (2014); K. Ishii et al., Nature Communications 5, 3714 (2014)

Nd
2-x

Ce
x
CuO

4
 (NCCO)

→ NCCO: electron doping 

→ upon doping: robust antiferromagnet (AF)

→ “magnon” velocity... increases with doping

    [magnon energy for q~(0, π) increases]

1. Persistence of spin excitations: experiment



3. Wzbudzenia spinowe w domieszkowanych tlenkach miedzi

Exact diagonalization for 3 doping levels:

– RIXS for the Hubbard model (+t' + core) 

– π-σ RIXS for the Hubbard model (+ t' + core)

– S(q, ω) for the Hubbard model (+t')

→  Line shapes: π-σ RIXS = S(q, ω) upon doping 

→  Line shapes: low energy part of full RIXS ~ S(q, ω) 

1. RIXS = S(q, ω) ?Intermezzo: RIXS ~ S(q, ω) 
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3. Wzbudzenia spinowe w domieszkowanych tlenkach miedzi

Exact diagonalization for 3 doping levels:

– RIXS for the Hubbard model (+t' + core) 

– π-σ RIXS for the Hubbard model (+ t' + core)

– S(q, ω) for the Hubbard model (+t')

1. RIXS = S(q, ω) ?

Large spin-orbit coupling in the 2p core levels

+ not fully occupied 2p core levels in the intermediate state of  RIXS

→ 

RIXS can trigger spin excitations  

→  Line shapes: π-σ RIXS = S(q, ω) upon doping 

→  Line shapes: low energy part of full RIXS ~ S(q, ω) 

Intermezzo: RIXS ~ S(q, ω)



These results are counterintuitive and relatively novel:

(1) “Magnon” energy: should decrease with doping?!

 

(2) “Magnon” spectral weight: should decrease with doping?!

S(q, ω), i. e. spin dynamical structure factor measured by Inelastic Neutron Scattering 

[PRL  98, 247003 (2007)]

Undoped:             Doped:

1. Persistence of spin excitations: theory



3. Wzbudzenia spinowe w domieszkowanych tlenkach miedzi

→ Questions:

     (A) Can the spectral weights of “magnons” be persistent upon doping?

     (B) Can the energy of “magnons” be persistent upon doping?

1. Persistence of spin excitations: theory



→ Questions:

     (A) Can the spectral weights of “magnons” be persistent upon doping?

     (B) Can the energy of “magnons” be persistent upon doping?

→  Calculations: S(q, ω) from the Hubbard model using DQMC

1. Persistence of spin excitations: theory
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→ Questions:

     (A) Can the spectral weights of “magnons” be persistent upon doping?

     (B) Can the energy of “magnons” be persistent upon doping?

→  Calculations: S(q, ω) from the Hubbard model using DQMC

→ Answers: 

     ad. (A) yes (in parts of the Brillouin zone) 

     ad. (B) yes (in parts of the Brillouin zone) 

1. Persistence of spin excitations: theory

OK... – but how to understand it?



(A) Introducing the “three-site” terms 

(often neglected but a priori present in t-J)

(B) These terms are to a large extent

responsible for the lack of softening of  “magnons”

1. Persistence of spin excitations: theory



Verifying that the 3-site terms are responsible for the persistence of “magnons”: 

(A) Can such a 'static' picture apply to our situation? 

→ Yes: on the electron-doped side (hole-doped side: more complex...)

(B) Do the 3-site terms support the hardening 

      on the el-doped side?

→ Yes, they seem to play a crucial role in hardening

1. Persistence of spin excitations: theory



Conclusions:

(1) “Magnons” survive doping in some parts of q–ω phase space

(2) 3-site terms are important 

What are the consequences of these findings for the electronic properties of cuprates?

1. Persistence of spin excitations: conclusions



Basic features found in ARPES spectra on undoped cuprates...

ARPES spectrum of Ca
2
CuO

2
Cl

2
  [PRB 71, 094518 (2005)]

2. Origin of strong dispersion of a hole: experiment



Basic features found in ARPES spectra on undoped cuprates...

… can well agree with the spectral function of the undoped Hubbard model

Cluster perturbation theory (CPT) + exact diagonalization (ED) for the Hubbard model

[for more on the method, see PRL 84, 522 (2000)] 

ARPES spectrum of Ca
2
CuO

2
Cl

2
  [PRB 71, 094518 (2005)]

2. Origin of strong dispersion of a hole: experiment



Basic features found in ARPES spectra on undoped cuprates...

… can well agree with the spectral function of the undoped Hubbard model

Cluster perturbation theory (CPT) + exact diagonalization (ED) for the Hubbard model

[for more on the method, see PRL 84, 522 (2000)] 

ARPES spectrum of Ca
2
CuO

2
Cl

2
  [PRB 71, 094518 (2005)]

2. Origin of strong dispersion in Mott insulators: experiment

But how to understand this spectrum?

2. Origin of strong dispersion of a hole: experiment



→ Hubbard spectrum:

→ Understanding spectral function of undoped Hubbard:

2. Origin of strong dispersion of a hole: theory



→ Hubbard spectrum:

→ Understanding spectral function of undoped Hubbard:

     – low binding energy: spin polaron

     

2. Origin of strong dispersion in Mott insulators: theory2. Origin of strong dispersion of a hole: theory



→ Hubbard spectrum:

→ Understanding spectral function of undoped Hubbard:

     – low binding energy: spin polaron →  OK

     

2. Origin of strong dispersion in Mott insulators: theory2. Origin of strong dispersion of a hole: theory



→ Hubbard spectrum:

→ Understanding spectral function of undoped Hubbard:

     – low binding energy: spin polaron 

     – high binding energy: SDW? spin-charge separation? t-physics?

2. Origin of strong dispersion in Mott insulators: theory2. Origin of strong dispersion of a hole: theory



→ Hubbard spectrum:

→ Understanding spectral function of undoped Hubbard:

     – low binding energy: spin polaron

     – high binding energy: SDW? spin-charge separation? t-physics?

     – why at all high and low binding energy (“waterfall”)?

2. Origin of strong dispersion in Mott insulators: theory2. Origin of strong dispersion of a hole: theory



In fact: t-J model does not reproduce the Hubbard spectrum:

2. Origin of strong dispersion in Mott insulators: theory2. Origin of strong dispersion of a hole: theory



But t-J-3-site model basically reproduces the Hubbard model:

(BTW: different spectral weight sum rules → the remaining differences between these models)

2. Origin of strong dispersion in Mott insulators: theory2. Origin of strong dispersion of a hole: theory



Perfect agreement between t-J-3s and Hubbard after 'normalization'

(       )

2. Origin of strong dispersion in Mott insulators: theoryIntermezzo: detailed comparison of the models



3-site terms responsible for the onset of the high binding energy part of the spectrum...

… and for the apparent dispersion

2. Origin of strong dispersion in Mott insulators: theory2. Origin of strong dispersion of a hole: theory



3-site terms →  strong dispersion in the high binding energy part of the spectrum...

… which was also verified in detail using SCBA and is the main conclusion of 2.

2. Origin of strong dispersion in Mott insulators: theory2. Origin of strong dispersion of a hole: theory



1. 3-site terms → persistence of magnetic excitations upon doping the cuprates:

2. 3-site terms → strong dispersion of a hole in the undoped cuprates:

      

3. Conclusions



1. 3-site terms → persistence of magnetic excitations upon doping the cuprates:

2. 3-site terms → strong dispersion of a hole in the undoped cuprates:

3. What connects these 2 stories:

    → 3-site terms play an important role in the cuprate / 2D Hubbard physics

    →  2 sides of the same phenomenon = 

          holes & “magnons” are not “fighting with each other” (in some part of q–ω space)

      

3. Conclusions



Appendix: 3-site terms → dispersion in the spectrum

But do we observe a real 

dispersion?

→ use another method – SCBA

→ indeed – 'dispersion' survives 

→ tune 3-site terms

→ indeed – it is a dispersion 



 Appendix: 3-site terms → dispersion in the spectrum

Finally:

→ this dispersion is not renormalized 

     by coupling to magnons:

→ so the hole moves as in this cartoon

→ for experts: if bosons were immobile,

     this would be different

 



Appendix: 3-site terms → dispersion in the spectrum

If magnons immobile (t-J 'Ising' model),

free dispersion due to 3-site strongly renormalized:

→ similar to the story of the orbital model

     [cf. PRL 100, 066403 (2008); PRB 78, 214423 (2008)]

→ this would be the same for any polaronic model:

     bosons immobile → free fermionic dispersion renormalized

     bosons dispersive → free fermionic dispersion shows up freely



Appendix: insight from tuning t'

→ let us add t':

→ indeed: low and high binding features separate

→ low binding part little affected by t'

→ high binding part: huge changes with t'



 Appendix: insight from tuning t'

→ let us add t':

→ high binding part: huge changes with t' 

     → high binding feature due to NNN hopping?

     → but can this happen even when t'=0? 
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