

Matter Physics

Department of Quantum

FERMI LIQUID BEHAVIOUR IN STRONGLY CORRELATED METALS

> NGSCES 2015 — Trogir September 2015

<u>Damien Stricker</u> Dirk van der Marel Jernej Mravlje Antoine Georges

Christophe Berthod

Rosalba Fittipaldi Antonio Vecchione

Traditional signature of Fermi liquids

Outline

* * *

I. What are the Fermi-Liquid fingerprints in optics ?

 \blacktriangleright Sr₂RuO₄ as an example

- 2. Can we understand the non-Fermi-liquid behavior above ~ 0.1 eV ?
 - Compare with DFT+DMFT
 - Resilient quasiparticles
- 3. What does it teach us about Sr₂RuO₄?
 - ▶ A simple model : from Tc to 1300 K !

Local Fermi-liquid regimes in optics

Drude (classical)
$$\sigma(\omega) = \frac{\omega_p^2/4\pi}{\tau^{-1} - i\omega}$$

Thermal (interacting electrons) $\sigma(\omega) = \frac{\omega_p^2/4\pi}{\tau_{opt}^{-1}(\omega) - i\omega[1 + \lambda_{opt}(\omega)]}$

- Non Drude « foot » of the optical conductivity
- Scaling of the optical scattering rate
- Universal scaling factor **p = 2**

 $\tau_{\rm opt}^{-1} \propto \left[\omega^2 + (p\pi k_{\rm B}T)^2\right]$

Gurzhi et al. JETP 35(8), 673 (1959) Berthod et al. PRB 87, 115109 (2013) Götze & Wölfle PRB 6, 1226 (1972)

Strangely enough, this precise form (including factor **2**) was not experimentally demonstrated from optics until now !

Fermi liquid regimes in optics

Drude (classical)
$$\sigma(\omega) = \frac{\omega_p^2/4\pi}{\tau^{-1} - i\omega}$$

Thermal (interacting electrons) $\sigma(\omega) = \frac{\omega_p^2/4\pi}{\tau_{opt}^{-1}(\omega) - i\omega[1 + \lambda_{opt}(\omega)]}$

- Non Drude « foot » of the optical conductivity
- Scaling of the optical scattering rate
- Universal scaling factor **p = 2**

 $\tau_{\rm opt}^{-1} \propto \left[\omega^2 + (p\pi k_{\rm B}T)^2\right]$

Gurzhi et al. JETP 35(8), 673 (1959) Berthod et al. PRB 87, 115109 (2013) Götze & Wölfle PRB 6, 1226 (1972)

Strangely enough, this precise form (including factor **2**) was not experimentally demonstrated from optics until now !

Compound	Material	T _{max}	ω _{max}	Р	ref
Heavy Fermions	UPt ₃	I		<	Sulewski, Phys. Rev. 38(8), 5338 (1998)
	CePd ₃			1.14	
	URu ₂ Si ₂	2	10	1.0	Nagel, PNAS 109, 47 (2012)
Titanates	Ce0.95Ca0.05TiO3.04	24	100	1.31	Katsufuji, PRB 60 7673 (1999)
	Nd _{0.95} TiO ₃	24	50	1.05	Yang, PRB 73 195125 (2006)
Transition metals	Cr	28	370	1.6	Basov, PRB 65 054516 (2002)
Organics	K -(BEDT-TTF) ₂	4	70	2.38	Dressel, J. Phys.Cond.Mat. 23, 293201 (2011)
Cuprates	HgBa ₂ CuO _{4.1}	19	100	1.5	Mirzaei & Stricker, PNAS 110 5774 (2013)
Magnetic moments	Resonant level			 - ∞	Maslov, PRB 86 155137 (2012)

Some questions about $I/T_{opt}(\omega,T)$

 $|. |/T \propto T^{\mu} ?$

What is the value of **µ** ?

2. $1/T_{opt} \propto \omega^{\eta}$?

What is the value of η ? 3. $I/T_{opt}(\omega,T) \propto \omega^2 + (p\pi k_B T)^2$? What is the value of p? Transport : What is the value of **µ** ?

Some questions about $I/T_{opt}(\omega,T)$

✓ |. |/⊤ ∝ T^µ ?

μ = 2

2. **Ι/τ**_{opt}∝ω^η ?

What is the value of η ? 3. $I/T_{opt}(\omega,T) \propto \omega^2 + (p\pi k_B T)^2$? What is the value of p?

Optical Spectroscopy

Crystals from R. Fittipaldi and A. Vecchione, Salerno, Italy

Reflectivity (3 meV - 3 eV) $R(\omega) = \frac{I_{\text{sample}}(\omega)}{I_{\text{reference}}(\omega)} \frac{I_{\text{reference}-\text{mirror}}(\omega)}{I_{\text{sample}-\text{mirror}}(\omega)}$ Ellipsometry $R(\omega) = \frac{1 - \sqrt{\epsilon(\omega)}}{1 + \sqrt{\epsilon(\omega)}}$ (0.47 eV - 6.2 eV)

Stricker et al. PRL 113, 087404 (2014)

Some questions about $I/T_{opt}(\omega,T)$

 \checkmark |. |/ $\mathbf{T} \propto \mathbf{T}^{\mu}$? $\mu = 2$ $\sqrt{2}$. $1/T_{opt} \propto \omega^{\eta}$? $\eta \approx 2$ 3. $I/T_{opt}(\omega,T) \propto \omega^2 + (p\pi k_B T)^2$? What is the value of **p**?

Some questions about I/T_{opt}(ω,T)

Some questions about $I/T_{opt}(\omega,T)$

 $\hbar\omega$ (meV)

phonons

Sr₂RuO₄ Scaling collapse in the thermal regime

rescaling the energy axis by $\xi_P^2 = (\hbar \omega)^2 + (p\pi k_B T)^2$

Statistics with 9 K < T < T_{max} and 3 meV < $\hbar\omega$ < 36 meV

Sr₂RuO₄ is a perfect Fermi liquid

\checkmark | |/T \propto T^µ? $\mu = 2$ $\sqrt{2}$. $1/T_{opt} \propto \omega^{\eta}$? $\eta \approx 2$ $\sqrt{3}$. $I/T_{opt}(\omega,T) \propto \omega^2 + (p\pi k_B T)^2$? **p** = 2 first experimental proof

Optics + DMFT calculations

Re σ + i Im σ

- DFT + LDA and DMFT
- Experiment
- ---- Universal Fermi liquid form

Mravlje, Georges et al., PRL 106, 096401 (2011) Deng, Georges et al., PRL 110, 086401 (2012) Berthod *et al.* PRB 87, 115109 (2013)

Beautiful agreement at low temperature and energy

- No e-phonon/impurity scattering
 No scale adjustment
- Thermal shoulder confirmed

Signature of FL is a deviation from Drude

- ▶ Very good fit below 40 K
- Frequency dependence of I/τ_{opt}

Clear deviations from FL above ~ 0.1 eV.

Very well described by DMFT !

Stricker et al. PRL 113, 087404 (2014)

DMFT QP scattering

Stricker et al. PRL 113, 087404 (2014) Mravlje, Georges et al. PRL 106, 096401 (2011) Deng, Georges et al. PRL 110, 086401 (2012)

Well above T_{FL} well-defined single-particle excitations or **resilient quasiparticles** continue to exist which

- I. Are broad but with I/τ not exceeding $\sim \pi k_{\text{B}} T$
- 2. Do not obey Landau's T^2
- 3. Stronger dispersion than LDA one in sharp contrast to the low-energy effective mass in the FL regime.

K-resolved spectral function

Intermediate conclusions

- I. Non-Drude ≠ non-Fermi-liquid
- 2. First experiment indicating accurately the FL behavior (p = 2) !
- 3. The FL regime provides the reference to characterize without ambiguity the deviations from FL theory
- 4. First optical proof of **Resilient Quasiparticles** with **non-FL lifetime**.
- 5. **Question** : Why is it the only Fermi-liquid with p = 2?

Stricker et al. PRL 113, 087404 (2014)

Two decade of transport measurement ...

Mackenzie & Maeno, Rev. Mod. Phys. 75 2 (2003)

dependence down to T_c . The in-plane resistivity, ρ_{ab} , is metallic from 300 K to low temperatures, and below approximately 20 K, both ρ_{ab} and ρ_c have an approximate

Kidd, PRL 94107003 (2005)

 T^2 dependence, as shown in the inset. This 7 by electron-phonon interactions. As the temperature is dence of ρ at low temperatures is consistent predictions of the Fermi-liquid theory of n system shows distinct non-Fermi liquid behavior. A tem-

What is the « glue » of electrons in Sr₂RuO₄

Susceptibility of correlations

Susceptibility of correlations

What is the « glue » of electrons in Sr₂RuO₄

Open question

Case n°I : **3D Fermi liquid ?**

 \triangleright α , β , γ bands

Van Hove Singularity K. Chen, PRB 84 245107 (2011)
Case n°2 : Resilient Quasiparticles ?

Case n°3 : collective modes ?

- 2D paramagnon
- 2D phonon
- any modes with linear dispersion in 2D...

Case n°4 : Dimensional crossover ?

Transition too sharp ? Fischer & Sigrist EPL 85 2 (2009)

- I. Sr₂RuO₄ the archetypal Fermi-liquid
 - Correct scaling with p = 2
 - Low-frequency « Drude Foot »
 - $Q: \boldsymbol{W} \boldsymbol{h} \boldsymbol{y} \text{ is it the only one } \boldsymbol{?}$
- 2. Sr₂RuO₄ the not so simple Fermi-liquid
 - Resilient quasiparticles
 - Two different mechanism link the electron together
 - Q : The origin of $\textbf{T}_{\textbf{FL}}$?

Stricker et al. PRL 113, 087404 (2014)

Stricker et al. in prep (2015)

