

Theory of laser-driven nonequilibrium superconductivity

arXiv:1412.2762 arXiv:1505.07575 Collaborators: A. F. Kemper, B. Moritz, J. K. Freericks, T. P. Devereaux, A. Georges, C. Kollath

Michael Sentef NGSCES2015 Trogir, September 2015

Nonequilibrium: The new frontier

Pump-probe spectroscopy (1887)

• stroboscopic investigations of dynamic phenomena

Muybridge 1887

Pump-probe spectroscopy (today)

- mpsd
- stroboscopic investigations of dynamic phenomena

TbTe3 CDW metal

Image courtesy: J. Sobota / F. Schmitt

Ultrafast Materials Science

Understanding the nature of quasi-particles

Relaxation channels and dynamics

Understanding ordered phases

- Collective oscillations
- Competing order parameters
- Beyond the Landau paradigm of phase transitions

Creating new states of matter

- Photo-induced phase transitions
- Non-thermal phases

Image courtesy: D. Basov

Outline

- NEGF, time-resolved photocurrent
- Ordered states: Driven superconductors
 - Higgs amplitude mode oscillations for optical pumping (1.5 eV laser)
 arXiv:1412.2762
 - light-enhanced superconductivity for phonon driving modeled as effective hopping ramp (nonlinear phononics)

arXiv:1505.07575

Non-Equilibrium Keldysh Formalism

System knows about its thermal initial state...

self-energy Σ : electron-electron scattering electron-phonon scattering

mps

same problem as in equilibrium (but worse):

t_{max} use your favorite self-energy approximation, e.g. perturbation theory, nonequilibrium DMFT, ...

> Include the effects of driving field through timedependent electronic dispersion

 $\varepsilon(k) \rightarrow \varepsilon(k,t)$

Equations of motion: Kadanoff-Baym

>,<,R,A are 4 Green's functions (2 independent) Initial values obtained from Matsubara axis (equilibrium)

$$\left[i\partial_t - \epsilon(\mathbf{k}(t))\right]G_{\mathbf{k}}^{\gtrless}(t,t') = \int_0^t d\bar{t} \ \Sigma^R(t,\bar{t})G_{\mathbf{k}}^{\gtrless}(\bar{t},t') + \int_0^{t'} d\bar{t} \ \Sigma^{\gtrless}(\bar{t},t)G_{\mathbf{k}}^A(\bar{t},t')$$

k indexes the quantum states Σ integration kernel involves sum over all **k**

Time stepping method: A.Stan, N.E.Dahlen, R. van Leeuwen, J.Chem.Phys.130, 224101 (2009)

Pump-probe photoemission spectroscopy

M. Eckstein and M. Kollar, PRB (2008), J. K. Freericks et al., PRL (2009), J. K. Freericks et al., arXiv:1403.7585 + gauge invariance (Bertoncini&Jauho Phys. Rev. B 44, 3655 (1991)) Max Planck Institute for the Structure and Dynamics of Matter 9

Model and Method

$$\mathcal{H} = \sum_{\boldsymbol{k}\sigma} \epsilon(\boldsymbol{k}, t) c_{\boldsymbol{k}\sigma}^{\dagger} c_{\boldsymbol{k}\sigma} + \sum_{\boldsymbol{q},\gamma} \Omega_{\gamma} b_{\boldsymbol{q},\gamma}^{\dagger} b_{\boldsymbol{q},\gamma} - \sum_{\boldsymbol{q},\gamma,\sigma} g_{\gamma} c_{\boldsymbol{k}+\boldsymbol{q}\sigma}^{\dagger} c_{\boldsymbol{k}\sigma} \left(b_{\boldsymbol{q},\gamma} + b_{-\boldsymbol{q},\gamma}^{\dagger} \right)$$

- electrons (2D square latt.) + spectrum of phonons + el-ph coupling (Holstein)
- Migdal-Eliashberg (1st Born) + phonon heat bath approximation

cf. textbooks (Mahan, AGD, ...) for Migdal-Eliashberg approx.

Dynamics of superconductors

Bogoliubov-de Gennes equation coupled to an electric field

Higgs amplitude mode

Anderson pseudospin

 $\sigma_k = \frac{1}{2} \Psi_k^{\dagger} \cdot \tau \cdot \Psi_k \qquad \text{Anderson, Phys. Rev. I 12, 1900 (1958)}$

$$\partial_t \sigma_k = 2 \boldsymbol{b}_k \times \sigma_k \qquad \boldsymbol{b}_k = \left(-\Delta', -\Delta'', \frac{\boldsymbol{\epsilon}_{k-\boldsymbol{e}A(t)} + \boldsymbol{\epsilon}_{k+\boldsymbol{e}A(t)}}{2}\right)$$

Tsuji, Aoki, arXiv:1404.2711

- Particle-hole symmetric by construction.
- Linear response vanishes.

Light-pseudospin coupling

$$\partial_t \sigma_k = 2 \boldsymbol{b}_k \times \boldsymbol{\sigma}_k \qquad \boldsymbol{b}_k = \left(-\Delta', -\Delta'', \frac{\boldsymbol{\epsilon}_{k-\boldsymbol{e}A(t)} + \boldsymbol{\epsilon}_{k+\boldsymbol{e}A(t)}}{2}\right)$$

$$\epsilon(k-A) + \epsilon(k+A) = 2\epsilon(k) + \mathcal{O}(A^2),$$

A² coupling: "Anderson pseudospin resonance" at 2 ω = 2 Δ

Tsuji & Aoki, arXiv:1404.2711 R. Matsunaga et al., Science 345, 1145 (2014)

Higgs amplitude mode

Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor

Ryusuke Matsunaga,¹* Naoto Tsuji,¹ Hiroyuki Fujita,¹ Arata Sugioka,¹ Kazumasa Makise,² Yoshinori Uzawa,³† Hirotaka Terai,² Zhen Wang,²‡ Hideo Aoki,^{1,4} Ryo Shimano^{1,5}*

Matsunaga et al., Science 345, 1145 (2014); PRL 2012/2013

see also: Mansart et al., PNAS 110, 4539 (2013)

amplitude mode oscillations observed in pump-probe optics

what about pump-probe photoemission spectroscopy?

Higgs amplitude mode

seeing amplitude mode directly in time-resolved **ARPES** spectroscopy?

Include the effects of driving

$$k \rightarrow k - e\mathbf{A}(t)$$

Oscillations in photocurrent

Amplitude mode oscillations

arXiv:1412.2762

Amplitude ("Higgs") mode oscillations predicted in time-resolved ARPES Reduced order parameter sets oscillation frequency Dissipation: Exciting Higgs even far away from gap resonance

Optics: Matsunaga et al., Phys. Rev. Lett. 111, 057002 (2013), Science 2014 [10.1126/science.1254697] Theory: Volkov & Kogan 1974, Barankov PRL 2004, Yuzbashyan PRL 2006, Tsuji PRL 2013 Max Planck Institute for the Structure and Dynamics of Matter

How to enhance boson-mediated SC?

- BCS theory plain vanilla SC (weak coupling)
 - $\Delta \approx 2\hbar\Omega_c \exp(-1/V_0 N(E_F))$
 - effective attraction $V_0 \sim g^2/(\hbar \Omega)$
 - e-boson coupling g
 - boson frequency arOmega
 - electronic DOS N(E_F)

Migdal-Eliashberg theory boson-mediated pairing

How to enhance boson-mediated SC?

- nonlinear phononics Q²Q: resonant excitation of vibrational modes – effects?
- 1. tune model parameters
 - e-boson coupling g
 - boson frequency \varOmega
 - electronic DOS N(E_F)
- $\alpha^2 F$ Eliashberg function

Gedankenexperiment (what if?)

- 2. dynamical effect
 - effective Hamiltonian (e.g., Floquet)

Classical lattice dynamics

$$\dot{Q}_{\mathrm{IR}} + \Omega_{\mathrm{IR}}^2 Q_{\mathrm{IR}} = \frac{e^* E_0}{\sqrt{M}_{\mathrm{IR}}} \sin(\Omega_{\mathrm{IR}} t) F(t)$$

$$\ddot{Q}_{\rm RS} + \Omega_{\rm RS}^2 Q_{\rm RS} = A Q_{\rm IR}^2$$

Rectification of a second (Raman) phonon via coherent driving of a first (IR) phonon

"Nonlinear phononics" M. Först et al., Nature Physics 7, 854 (2011) A. Subedi, A. Cavalleri, A. Georges, PRB 89, 220301R (2014)

Classical lattice dynamics

"Nonlinear phononics"

M. Först et al., Nature Physics 7, 854 (2011) A. Subedi, A. Cavalleri, A. Georges, PRB 89, 220301R (2014)

Experimental motivation

"An optically stimulated superconducting-like phase in K3C60 far above equilibrium Tc" *M. Mitrano et al., arXiv: 1505.04529* В А

cf. Alice Cantaluppi's talk

Superconductor evolution

mpsd

Enhancement during ramp

Order parameter enhancement ~4

Superconductor evolution

mpsd

Summary: NEGF at work!

- Amplitude mode oscillations in pumped SC *arXiv:1412.2762*
- Light-enhanced SC via nonlinear phononics *arXiv:1505.07575*

