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B Strong correlations — fascinating physics
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B Physical origin of spectra
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B Outline

How to determine origin of spectra theoretically?
* Schwinger-Dyson equation of motion II
* Fluctuation diagnostics method F,uctuat;!magms“cs

Application: two-dimensional Hubbard model
 Benchmark: attractive case A
* Pseudogap physics: repulsive case ¥ "!"\f\/

Further insight: weak-coupling analysis
* Analysis of the full vertex \
* Consequences for d-wave pairing fluctuations /




B How to proceed in theory?

Starting from Dyson-Schwinger
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B Rewriting the EOM in different representations...
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2(k) =ZF¢¢(k,k',q)ggg
“ 0=Q,0),k =(K,v)

Idea: Consider vertex F'y| in different representations!

Fch(k, ki’,q) = FTT(k,k,,Q) —l_F’N(k? k,,q) charge
Fsp(kﬂ k,v Q) — FTT(ka kla Q) - F’N(ka k,v Q)
Fpp(ka k', Q) — F’N,(kv k'yq—k— k,)

Identical results after all k- and w-summations
But: significant info by performing partial summations



. and partially sum over frequency...

over all variables except momentum transfer

Zo(0 = L F (K )09 B 3(K)= 3T (K)
Q

r = ch, sp, pp

— specific spatial pattern e'® = certain collective mode
In the given representation r!

E.Q. =(1r1, M), charge representation: Charge density wave (CDW)
=(1T, TT), Spin representation: Antiferromagnetism (AFM)
=(0,0), spin representation: Ferromagnetism (FM)
=(0,0), particle-particle representation: Superconductivity (SC)

If one of these modes dominates the self-energy:

EQ(k) strongly peaked at the corresponding Q if one
adopts the “ correct” representation r!

“Wrong“ representation: weak Q dependence!



B ... or partially sum over momentum.

partial summation over all variables execpt the transfer frequencyw

2, (K=Y F (ka9 EE) 2(k)=Y%, K

E,Q r = ch, sp, pp

For a given representation r:

f]w (k) (almost) w-independent iw (k) (strongly) peaked at w — 0
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B Outline

How to determine origin of spectra theoretically?
* Schwinger-Dyson equation of motion II
* Fluctuation diagnostics method F,uctuaﬁ:!,,iagmsms

Application: two-dimensional Hubbard model
* Benchmark: attractive case LA A
* Pseudogap physics: repulsive case by

Further insight: weak-coupling analysis

* Analysis of the full vertex \ Q
2

* Consequences for d-wave pairing fluctuations




B Application to test case: attractive Hubbard model

HUBBARD HAMILTONIAN

| cf. talk by
Benchmark: attractive model: U<O Agnese

:> physics is well understood in this case! | Tagliavini

Dominating fluctuations (modes) at half-filling:

Q=(1r, 1) (checkerboard) charge-density-wave fluctuations



B Application to test case: attractive Hubbard model

DCA for 2d Hubbard model, N=8, t=-0.25eV, u=-0.53eV (n=0.87), U=-1eV, T=0.025eV
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== What does fluctuation diagnostics (FluctDiag) tell us?
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Fluctuation Diagnostics

B Attractive Hubbard model: FluctDiag
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.I||
Fluctuation Diagnostics

B Attractive Hubbard model: FluctDiag
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Y Attractive Hubbard model: FluctDiag .|||

Fluctuation Diagnostics
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Y Attractive Hubbard model: FluctDiag .|||

Fluctuation Diagnostics
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A4 Attractive Hubbard model: FluctDiag .|||
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Fluctuation Diagnostics
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Y Attractive Hubbard model: FluctDiag .|||

Fluctuation Diagnostics

Are these strong particle-particle and charge fluctuations
long-lived?

AN w ( k) charge picture particle picture
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Long-lived charge and pairing fluctuations are present!



B Application to repulsive Hubbard model

DCA for 2D Hubbard model, N=8, t=-0.25eV, p=0.8eV (n=1), U=1.6eV, T=0.033eV
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Fluctuation Diagnostics

B Repulsive Hubbard model: FluctDiag
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B Repulsive Hubbard model: FluctDiag .|||

Fluctuation Diagnostics
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B Repulsive Hubbard model: FluctDiag .|||

Fluctuation Diagnostics
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B Repulsive Hubbard model: FluctDiag .|||

Fluctuation Diagnostics

Are these strong spin fluctuations long-lived?

spin picture particle picture
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) antiferromagnetic spin fluctuatic

Long-lived spin fluctuations are responsible for the
pseudogap and momentum differentiation in the self-energy!
(for the DCA of the single band Hubbard model)



B Outline

How to determine origin of spectra theoretically?
* Schwinger-Dyson eguation of motion II
* Fluctuation diagnostics method F,uctuat;!,,iagmsﬂcs

Application: two-dimensional Hubbard model
* Benchmark: attractive case A
* Pseudogap physics: repulsive case ¥ )} \&‘3/

Further insight: weak-coupling analysis
* Analysis of the full vertex \
* Consequences for d-wave pairing fluctuations /
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B “Spirit” of the FluctDiag .|||

Fluctuation Diagnostics

A well-defined spin mode appears from the “ wrong*
charge/ perspective as short-lived/short-
ranged charge/ fluctuations!

Compare: Geocentric vs. Heliocentric model!

Heliocentric system

Geocentric system

Both are possible, but only one gives a simple description of the physics!



B Further insight: weak coupling analysis .|||

Fluctuation Diagnostics

Approximation of the vertex by its main structures (here for the local vertex):
G. Rohringer, et al., PRB, 2012.

6.0e-01 4
4.0e-01
2.0e-01 20
0.0e+00

2.0e-01 >

-4.0e-01

0.0e+00
-1.0e-01
-2.0e-01
-3.0e-01
-4.0e-01
-5.0e-01

-40 -20 0 20 4

Perturbative analysis of the main structures:
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Main structures of the 1Pl vertex correspond to physical response
functions (susceptibilities)!



B Further insight: weak coupling analysis .|||

Fluctuation Diagnostics

. 1 . 1 . .
Fsp(k! K 1q) ~-U -U ZI:Zsp(q)_l_ZZsp(k _k) _Elch(k _k)_l_pr(k_l_k +q)i|

C. Karrasch, et al., J. Phys.: Condensed Matter, 2008. and C. Husemann and M Salmhofer, PRB, 2009.

linear response to external forcing field

Xr (Q’ Lu) : associated with channel r

r=ch—chemical potential T=sp— r=pp—

At phase transition:

Qo = defines spatial pattern of the corresponding ordered phase!
(Q=(1r,m) for AFM and CDW, Q=(0,0) for FM and SC)



B Further insight: weak coupling analysis .|||

Fluctuation Diagnostics

Assume y (G, =0) tobethe dominant contribution in the EOM

| 11 -
F. (k.K', ) ~ U —uz[%p(qﬂz%p(k )= Zn () + 35 K'40)

. 3 . 1 . .
Fn (K, K, Q) = U +U 2{—7@ () + 7 Zep (K=K + 2 Zen (KK) = (K + K +0)

In “proper* (spin) channel: w0
peaked Q and w distribution %
0

Two exemplary (k) ~ ~ xAF/Ne
perspectives after
partial summation

In “wrong* (e.g. charge) channel:

democratic Q and w distribution




B Outline

How to determine origin of spectra theoretically?
* Schwinger-Dyson eguation of motion II
* Fluctuation diagnostics method F,uctuat;!,,iagmsﬂcs

Application: two-dimensional Hubbard model
* Benchmark: attractive case ST
* Pseudogap physics: repulsive case ¥ ) § \&:!/

Further insight: weak-coupling analysis
* Analysis of the full vertex \
* Consequences for d-wave pairing fluctuations /




I Role of d-wave pairing fluctuations ,|||

Fluctuation Diagnostics

e v
d-wave pairing operator: AT =3 [ f(K)cjrcl ), f(K) = -

d-wave pairing fluctuations: (ATA) ~ D KK f(K)f(K’)(cLTc‘LK¢c_K,¢cK,T)

Vicinity of Instability: enhanced

Also large contribution to self-energy?

large (ATA) EE5) sgn<c;;chK¢cK.¢cK.T> =sgn| f (K) f (K")
EOM rewritten: % >, B(k)g(k) = ZKf,Q<CI<¢CE_K¢C_Kf¢CQ+KfT>

f (K") not present!

couple inefficiently to the
self-energy due to d-wave form factor!
(for purely local U>0)

1) Nat. Sc. Rep. 2, 381 (2012)
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Fluctuation Diagnostics
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B Conclusions and outlook

defining spectra Fluctuation D

Method of determining physical processes

lagnostics

* Rewriting equation of motion:
Fluctuation diagnostics

Application to 2D U>0 Hubbard model (in DCA)
* Pseudogap due to strong
* Inefficient coupling of

—
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Outlook: non-local interactions (extended Hubbard), multi-orbital physics

Fluctuation diagnostics of the electron self-energy — origin of the pseudogap physics,



