

Fluctuation diagnostics of the electron self-energy – origin of the pseudogap physics

Thomas Schäfer

O. Gunnarsson, J. LeBlanc, E. Gull, J. Merino, G. Sangiovanni, G. Rohringer and A. Toschi Phys. Rev. Lett. **114**, 236402 (2015)

The New Generation in Strongly Correlated Electron Systems Trogir, Croatia, 14rd-18th September 2015

Strong correlations – fascinating physics

1) QUANTUM CRITICALITY

J. Custers et al., Nature (2003)

3) HIGH TEMPERATURE SUPERCONDUCTIVITY

Mc Whan et al., PRB (1973)

4) OPTICAL LATTICES

M. Greiner et al., Nature (2008)

Physical origin of spectra

How to determine origin of spectra theoretically?

- Schwinger-Dyson equation of motion
- Fluctuation diagnostics method

Application: two-dimensional Hubbard model

- Benchmark: attractive case
- Pseudogap physics: repulsive case

Fluctuation Diagnostics

Further insight: weak-coupling analysis

- Analysis of the full vertex
- Consequences for d-wave pairing fluctuations

How to proceed in theory?

Rewriting the EOM in different representations...

$$\Sigma = \underbrace{g}{g} F_{\uparrow\downarrow} \qquad \Sigma(k) = \sum_{k',q} F_{\uparrow\downarrow}(k,k',q) ggg$$
$$q = (\vec{Q},\omega), k = (\vec{K},\nu)$$

Idea: Consider vertex $F_{\uparrow\downarrow}$ in different representations!

$$\begin{split} & \boldsymbol{F_{ch}}(\boldsymbol{k},\boldsymbol{k'},\boldsymbol{q}) = F_{\uparrow\uparrow}(\boldsymbol{k},\boldsymbol{k'},\boldsymbol{q}) + F_{\uparrow\downarrow}(\boldsymbol{k},\boldsymbol{k'},\boldsymbol{q}) & \text{charge} \\ & \boldsymbol{F_{sp}}(\boldsymbol{k},\boldsymbol{k'},\boldsymbol{q}) = F_{\uparrow\uparrow}(\boldsymbol{k},\boldsymbol{k'},\boldsymbol{q}) - F_{\uparrow\downarrow}(\boldsymbol{k},\boldsymbol{k'},\boldsymbol{q}) & \text{spin} \\ & \boldsymbol{F_{pp}}(\boldsymbol{k},\boldsymbol{k'},\boldsymbol{q}) = F_{\uparrow\downarrow}(\boldsymbol{k},\boldsymbol{k'},\boldsymbol{q}-\boldsymbol{k}-\boldsymbol{k'}) & \text{particle-particle} \end{split}$$

Identical results after all **k**- and ω-summations **But:** significant info by performing **partial summations**

... and partially sum over frequency...

partial summation over all variables except momentum transfer Q

Q \Rightarrow specific **spatial pattern** $e^{iQR} \Rightarrow$ certain **collective mode** in the **given representation** *r*!

E.g.: • Q=(π , π), charge representation: *Charge density wave (CDW)*

- $Q=(\pi, \pi)$, spin representation: *Antiferromagnetism (AFM)*
- Q=(0,0), spin representation: *Ferromagnetism (FM)*
- Q=(0,0), particle-particle representation: Superconductivity (SC)

If one of these modes dominates the self-energy:

 $\tilde{\Sigma}_{\mathcal{Q}}(k)$ strongly peaked at the corresponding Q if one adopts the "correct" representation r!

"Wrong" representation: weak Q dependence!

... or partially sum over momentum.

partial summation over all variables execpt the transfer frequency ω

For a given representation r:

How to determine origin of spectra theoretically?

- Schwinger-Dyson equation of motion
- Fluctuation diagnostics method

Application: two-dimensional Hubbard model

- Benchmark: attractive case
- Pseudogap physics: **repulsive** case

Further insight: weak-coupling analysis

- Analysis of the full vertex
- Consequences for d-wave pairing fluctuations

Application to test case: attractive Hubbard model

HUBBARD HAMILTONIAN

$$H = -t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Benchmark: attractive model: U<0

physics is well understood in this case!

Dominating fluctuations (modes) at half-filling:

Q=(0,0) s-wave pairing (superconductivity) fluctuations $Q=(\pi,\pi)$ (checkerboard) charge-density-wave fluctuations

Application to test case: attractive Hubbard model

DCA for 2d Hubbard model, N=8, t=-0.25eV, µ=-0.53eV (n=0.87), U=-1eV, T=0.025eV

What does fluctuation diagnostics (FluctDiag) tell us?

• $Q=(\pi, \pi)$ charge-density-wave fluctuations

s-wave Q=(0,0) pairing fluctuations

uniform Q distribution in the spin picture

Fluctuation Diagnostics

- Q=(π, π) charge-density-wave fluctuations
- s-wave Q=(0,0) pairing fluctuations
- uniform Q distribution in the spin picture

Are these strong particle-particle and charge fluctuations long-lived?

Long-lived charge and pairing fluctuations are present!

Application to repulsive Hubbard model

DCA for 2D Hubbard model, N=8, t=-0.25eV, µ=0.8eV (n=1), U=1.6eV, T=0.033eV

What can fluctuation diagnostics tell us?

Repulsive Hubbard model: FluctDiag

Uniform Q distribution in the charge

Repulsive Hubbard model: FluctDiag

Uniform Q distribution in the charge and particle-particle picture

Repulsive Hubbard model: FluctDiag

- $Q=(\pi, \pi)$ antiferromagnetic spin fluctuations
- Momentum differentiation
- Uniform Q distribution in the charge and particle-particle picture

Are these strong spin fluctuations long-lived?

Long-lived spin fluctuations are responsible for the pseudogap and momentum differentiation in the self-energy! (for the DCA of the single band Hubbard model)

How to determine origin of spectra theoretically?

- Schwinger-Dyson equation of motion
- Fluctuation diagnostics method

Application: two-dimensional Hubbard model

- Benchmark: attractive case
- Pseudogap physics: repulsive case

Further insight: weak-coupling analysis

- Analysis of the full vertex
- Consequences for d-wave pairing fluctuations

"Spirit" of the FluctDiag

A well-defined spin mode appears from the "wrong" charge/particle-particle perspective as short-lived/shortranged charge/particle-particle fluctuations!

Compare: Geocentric vs. Heliocentric model!

Both are possible, but only one gives a simple description of the physics!

Further insight: weak coupling analysis

Further insight: weak coupling analysis

$$F_{sp}(k,k',q) \approx -U - U^2 \left[\chi_{sp}(q) + \frac{1}{2} \chi_{sp}(k'-k) - \frac{1}{2} \chi_{ch}(k'-k) + \chi_{pp}(k+k'+q) \right]$$

C. Karrasch, et al., J. Phys.: Condensed Matter, 2008. and C. Husemann and M Salmhofer, PRB, 2009.

$$r = ch \rightarrow \text{chemical potential } r = sp \rightarrow (staggered) magnetic field$$

At second order phase transition: $\chi_r(\mathrm{Q}\!=\!\mathrm{Q}_0,\omega\!=\!0) \Rightarrow \infty$

 $Q_0 \Rightarrow$ defines spatial pattern of the corresponding ordered phase! (Q=(π,π) for AFM and CDW, Q=(0,0) for FM and SC)

Further insight: weak coupling analysis

Assume $\chi_{sp}(\vec{q},\omega=0)$ to be the dominant contribution in the EOM

$$F_{sp}(k,k',q) \approx -U - U^{2} \left[\chi_{sp}(q) + \frac{1}{2} \chi_{sp}(k'-k) - \frac{1}{2} \chi_{ch}(k'-k) + \chi_{pp}(k+k'+q) \right]$$

$$F_{ch}(k,k',q) \approx U + U^{2} \left[-\chi_{ch}(q) + \frac{3}{2} \chi_{sp}(k'-k) + \frac{1}{2} \chi_{ch}(k'-k) - \chi_{pp}(k+k'+q) \right]$$

Two exemplary perspectives after partial summation

In "proper" (spin) channel: peaked Q and ω distribution

$$\widetilde{\Sigma}_{\omega}(k) \thicksim \widetilde{\Sigma}_{\mathbf{Q}}(k) \sim \chi_{AF}/N_{c}^{\omega^{=}}$$

In "wrong" (e.g. charge) channel: democratic Q and ω distribution

 $\omega \neq 0$

How to determine origin of spectra theoretically?

- Schwinger-Dyson equation of motion
- Fluctuation diagnostics method

Application: two-dimensional Hubbard model

- Benchmark: attractive case
- Pseudogap physics: **repulsive** case

Further insight: weak-coupling analysis

- Analysis of the full vertex
- Consequences for d-wave pairing fluctuations

Role of d-wave pairing fluctuations

1)

d-wave pairing operator:
$$\Delta^{\dagger} = \sum_{\mathbf{K}} f(\mathbf{K}) c^{\dagger}_{\mathbf{K}\uparrow} c^{\dagger}_{-\mathbf{K}\downarrow}, f(\mathbf{K}) =$$

d-wave pairing fluctuations: $\langle \Delta^{\dagger} \Delta \rangle \sim \sum_{\mathbf{K},\mathbf{K}'} f(\mathbf{K}) f(\mathbf{K}') \langle c^{\dagger}_{\mathbf{K}\uparrow} c^{\dagger}_{-\mathbf{K}\downarrow} c_{-\mathbf{K}'\downarrow} c_{\mathbf{K}'\uparrow} \rangle$

Vicinity of d-wave instability: enhanced d-wave pairing fluctuations Also large contribution to self-energy?

$$\begin{aligned} \text{large } \langle \Delta^{\dagger} \Delta \rangle & \longrightarrow \quad \text{sgn} \Big\langle c_{K\uparrow}^{\dagger} c_{-K\downarrow}^{\dagger} c_{K'\downarrow} c_{K'\uparrow} \Big\rangle = \text{sgn} f(K) f(K') \end{aligned}$$
$$\begin{aligned} \text{EOM rewritten:} \quad \frac{U}{\beta} \sum_{\nu} \Sigma(k) g(k) = \sum_{\mathbf{K}', \mathbf{Q}} \langle c_{\mathbf{K}\uparrow}^{\dagger} c_{\mathbf{Q}-\mathbf{K}\downarrow}^{\dagger} c_{-\mathbf{K}'\downarrow} c_{\mathbf{Q}+\mathbf{K}'\uparrow} \Big\rangle \end{aligned}$$

f(K') **not** present!

d-wave pairing fluctuations couple inefficiently to the self-energy due to d-wave form factor! (for purely local U>0)

G. Sangiovanni

O. Gunnarsson

J. Merino

G. Rohringer T. Schäfer A. Toschi

E. Gull

J. LeBlanc

Fluctuation diagnostics of the electron self-energy - origin of the pseudogap physics, PRL 114, 236402 (2015)

Conclusions and outlook

Method of determining physical processes defining spectra

 Rewriting equation of motion: Fluctuation diagnostics

> .8 .7

> > .6 .5

> > .3

.2

-Im $\widetilde{\Sigma}_{\mathbf{Q}}[\mathbf{k}]$

Application to 2D U>0 Hubbard model (in DCA)

- Pseudogap due to strong spin fluctuations
- Inefficient coupling of d-wave pairing

Fluctuation Diagnostics

Outlook: non-local interactions (extended Hubbard), multi-orbital physics

Fluctuation diagnostics of the electron self-energy - origin of the pseudogap physics, PRL 114, 236402 (2015)