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Introduction: The Mott-Hubbard transition
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Simple description of electronic correlations

Basic model for correlations:

Hubbard Hamiltonian Not solvable analytically in arbitrary

dimensions, its properties can be

analysed by means of the dynamical
=t Z C' oCic + U Z Nithil mean field theory (DMFT).

(i.j),0 * All calculations on this poster have been

> t electron hopping term * carried out for the half-filled, two-dimensional

» U: Coulomb repulsion in case of
double occupancy

Hubbard model and all energies are measured
in units of 4t = 1.

The dynamical mean field theory (

In the DMFT |[2] the full many-body Hamiltonian is mapped onto a
(self-consistent) single-site Anderson impurity model, creating a spatial
mean field while keeping all temporal (quantum) fluctuations.
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NO: spatial correlations
YES: local temporal correlations 0, 1,4, t1fj(t)

Famous DMFT results

Non-perturbative analysis of the MIT [3], predictions of spectroscopic
experimental results for e.g. V203 [4], description of -phase of Pu [5],
DMFT also shows anomalous physics

Kinks [6], formation of large instantaneous magnetic moments, abrupt
change of the out-of-equilibrium behaviour after a quench of the electronic
interaction [7].

Paths to the inclusion of non-local correlations beyond

Cluster extensions of DMFT /Cluster methods

eCellular DMFT (CDMFT [8]) short range
eDynamical Cluster Approximation (DCA [8]) spatial correlations
eVariational Cluster Approximation (VCA [9]) limited by cluster size

Diagrammatic extensions of DMFT based on vertex functions [10, 11]

eDynamical Vertex Approximation (DA [12]) systematic inclusion of
eDual Fermion Approach (DF [13]) spatlal correlations

eOne-particle irreducible approach (1Pl [14])

eDMFT and functional RG (DMF?RG [15]) every length-scale

Diagrammatic content and principle of

In DMFT the 1-particle irreducible diagrams (self-energy, 1PI) are assumed to be purely local

Ko

In DI'A the 2-particle fully irreducible dlagrams (2P1) are assumed to be purely local

what results in a (systematically) non-local self-energy.
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Phase diagram in two and infinite dimensions [16]
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Inclusion of short-range spatial correlations (CDMFT [8], VCA) leads to:
» reduction of Uc (but Uc still finite)

» shrinking of the coexistence region

» inversion of slope of transition line

Inclusion of spatial correlations on all length scales (DI'A) results in:
» only a crossover region remaining from the MIT (confirmed by BSS-QMC [17])

» for U > 0, at low enough T, an insulator is always found = no MIT in 2D

One- and two-particle level analysis at U=0.5 [16]
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> 24 1he spin correlation function in real
space exhibits antiferromagnetic
fluctuations, which become (quasi-)
long-ranged, going to smaller T.

= Long-ranged spin fluctuations
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Heisenberg [16]

Which part of the energy stabilizes
antiferromagnetic behaviour in the
weak-coupling regime? If T is lowered
DI A shows a decrease in double
occupancy of =~ 1%, which
corresponds to an equal decrease in
potential energy, indicating

Slater-paramagnons as the driving

force of the fluctuations.

Conclusions and outlook

The MIT is absent in the (half-filled) Hubbard model in two dimensions: For every finite
value of the local Coulomb interaction an insulating gap is opened at low enough
temperature (crossover).

The gap is opened by long-ranged antiferromagnetic spin fluctuations.

The nature of those fluctuations is Slater-like in the weak-coupling regime.

Outlook: Frustration of the lattice by adding next-to-nearest-neighbour hopping or
doping.
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