NGSCES 2015 15/09/2015

Fully *ab initio* calculation of transition temperature for alkali-doped fullerene superconductors

Yusuke Nomura

Univ. of Tokyo (Japan) → École polytechnique (From April 2015)

In collaboration with Shiro Sakai, Massimo Capone, and Ryotaro Arita

Science Advances: new journal in Science family (established in 2015)

Alkali-doped fullerides

fcc A₃C₆₀ (A=K, Rb, Cs)

O.Gunnarsson Rev.Mod.Phys. 69, 575 (1997) Ganin et al, Nature 466,221(2010)

• A15 Cs₃C₆₀

 $T_c = 38 \text{ K}$

A.Ganin et al Nature Mater. 7,367-371(2008) Y.Takabayashi et al Science 323,1285-1590(2009)

 \checkmark Highest T_c among molecular superconductors

Electronic structure

S. C. Erwin, W. E. Pickett, Science 254, 842 (1991); A. F. Hebard, Physics Today 45, 26 (1992)

- ✓ 3 orbital, half-filled
- ✓ Molecular orbital + small hopping between them

Light-induced superconducting-like phase in K₃C₆₀

M. Mitrano et al., arXiv: 1505.04529

- ✓ Talk by Alice Cantaluppi (this morning)
- ✓ Study for nonequilibrium SC by Michael Sentef (tomorrow)

I focus on equilibrium properties !

Superconductivity in alkali-doped fullerides

Zadik et al., Sci. Adv. 1, e1500059 (2015).

- > Mott insulating phase: induced by repulsive interaction
- ➤ s-wave superconductivity ($T_c \sim 35K$, very high for small bandwidth): induced by attractive interaction
- Low-spin state and dynamical Jahn-Teller effect in Mott phase (positive Hund's coupling should favor high-spin state)

Difficulty in predicting T_c

Density functional theory for superconductors (SCDFT)

— purely theoretical method to calculate T_c without any empirical parameter such as μ^*

L. N. Oliveira *et al.*, PRL **60**, 2430 (1988); T. Kreibich and E. K. U. Gross, PRL **86**, 2984 (2001); Lueders *et al.*, PRB **72**, 024545 (2005); Marques *et al.*, PRB **72**, 024546 (2005)

The way to calculate T_c for **unconventional** superconductors has not been established

Motivation & Outline

- Unified description of the phase diagram
 - Pairing mechanism?
 - Why s-wave? (naïvely, strong correlation is incompatible with s-wave)
 - Origin of low-spin state?

- \succ Fully *ab initio* calculation of superconducting transition temperature T_c
 - Previous methods have often employed empirical parameters

we employ the combination of density functional theory (DFT) and model-calculation method (DMFT)

We show that effectively inverted Hund's rule is realized

ightarrow unusual cooperation between strong correlations and phonons

Unconventional mechanism !

M. Capone *el al.*, RMP 81, 943 (2009); M. Capone *et al.*, Science 296, 2364 (2002). M. Capone *et al.*, PRL 86, 5361-5364 (2001); YN *et al.*, Sci. Adv. 1, e1500568 (2015).

Multi-energy-scale *ab initio* scheme for correlated electrons (MACE)

	Density functional theory (DFT)	Model calculation [e.g. dynamical mean field theory (DMFT)]
Realistic	(\mathbf{i})	
Strong correlation	:()	$\overline{\bigcirc}$

Combination of DFT and model-calculation method

Procedure

- 1. Perform the DFT band structure calculation
- 2. *Ab initio* derivation of low-energy Hamiltonian including phonon (lattice vibration) degrees of freedom
- Unbiased analysis with the extended DMFT
 → reproduction of experimental phase diagram at a quantitative level

Ab initio derivation of the low-energy model

Low-energy Hamiltonians for C₆₀ superconductors (3 orbital, half-filled)

$$\mathcal{H} = \sum_{\mathbf{k}} \sum_{ij} \left[\mathcal{H}_{0}^{(w)}(\mathbf{k}) \right]_{ij} c_{i\mathbf{k}}^{\sigma\dagger} c_{j\mathbf{k}}^{\sigma} + \sum_{\mathbf{q}} \sum_{\mathbf{k}\mathbf{k'}} \sum_{ij,i'j'} \sum_{\sigma\sigma'} U_{ij,i'j'}^{(p)}(\mathbf{q}) c_{i\mathbf{k}+\mathbf{q}}^{\sigma\dagger} c_{j'\mathbf{k'}+\mathbf{q}}^{\sigma'} c_{j\mathbf{k}}^{\sigma} + \sum_{\mathbf{q}} \sum_{\mathbf{k}\mathbf{k'}} \sum_{ij,i'j'} \sum_{\sigma\sigma'} U_{ij,i'j'}^{(p)}(\mathbf{q}) c_{i\mathbf{k}+\mathbf{q}}^{\sigma\dagger} c_{j'\mathbf{k'}+\mathbf{q}}^{\sigma'} c_{j\mathbf{k}}^{\sigma} + \sum_{\mathbf{q}\nu} \sum_{\mathbf{q}\nu} \sum_{ij} \sum_{ij} \sum_{\sigma} g_{ij}^{(p)\nu}(\mathbf{k},\mathbf{q}) c_{i\mathbf{k}+\mathbf{q}}^{\sigma\dagger} c_{j\mathbf{k}}^{\sigma} (b_{\mathbf{q}\nu} + b_{-\mathbf{q}\nu}^{\dagger}) + \sum_{\mathbf{q}\nu} \omega_{\mathbf{q}\nu}^{(p)} b_{\mathbf{q}\nu}^{\dagger} b_{\mathbf{q}\nu}$$

- Electronic one-body part (red): maxloc Wannier
- Coulomb interaction part (green): cRPA method
 → talks by Priyanka, Philipp (yesterday)
- Phonon (lattice vibration) part (blue): cDFPT method

All the parameters are determined by *ab initio* calculations, not by hand

YN, K. Nakamura, and R. Arita, PRB 85, 155452 (2012); YN, K. Nakamura, and R. Arita, PRL 112, 027002 (2014)

Ab initio downfolding for electron-phonon coupled systems

Low-energy models for electron-phonon coupled systems:

Electronic one-body part

$$\mathcal{H} = \sum_{\mathbf{k}} \sum_{ij} \left[\mathcal{H}_{0}^{(\mathbf{w})}(\mathbf{k}) \right]_{ij} c_{i\mathbf{k}}^{\sigma\dagger} c_{j\mathbf{k}}^{\sigma} + \sum_{\mathbf{q}} \sum_{\mathbf{k}\mathbf{k}'} \sum_{ij,i'j'} \sum_{\sigma\sigma'} U_{ij,i'j'}^{(p)}(\mathbf{q}) c_{i\mathbf{k}+\mathbf{q}}^{\sigma\dagger} c_{i'\mathbf{k}'}^{\sigma'\dagger} c_{j'\mathbf{k}'+\mathbf{q}}^{\sigma} c_{j\mathbf{k}}^{\sigma} + \sum_{\mathbf{q}} \sum_{\mathbf{k}} \sum_{ij} \sum_{\mathbf{k}} \sum_{ij} \sum_{\sigma} g_{ij}^{(p)\nu}(\mathbf{k},\mathbf{q}) c_{i\mathbf{k}+\mathbf{q}}^{\sigma\dagger} c_{j\mathbf{k}}^{\sigma} (b_{\mathbf{q}\nu} + b_{-\mathbf{q}\nu}^{\dagger}) + \sum_{\mathbf{q}\nu} \omega_{\mathbf{q}\nu}^{(p)} b_{\mathbf{q}\nu}^{\dagger} b_{\mathbf{q}\nu}$$

i,j: orbital (Wannier) indices (w): Wannier gauge σ : spin index

O^(p): the quantity with constraint (partially screened)

Maximally localized Wannier function

N. Marzari and D. Vanderbilt, Phys. Rev. B. 56 12847 (1997); I. Souza et al., ibid. 65, 035109 (2001)

Maximally localized Wannier function

N. Marzari and D. Vanderbilt, Phys. Rev. B. 56 12847 (1997) I. Souza et al., ibid. 65, 035109 (2001)

The unitary matrix U is decided to minimize the spread functional Ω :

$$\Omega = \sum_{n} \left[\left\langle r^{2} \right\rangle_{n} - \overline{\mathbf{r}}_{n}^{2} \right]$$

where,

$$\overline{\mathbf{r}}_{n} = \left\langle w_{n\mathbf{0}} \big| \mathbf{r} \big| w_{n\mathbf{0}} \right\rangle$$
$$\left\langle r^{2} \right\rangle_{n} = \left\langle w_{n\mathbf{0}} \big| r^{2} \big| w_{n\mathbf{0}} \right\rangle$$

One body part of the Hamiltonian

N. Marzari and D. Vanderbilt, Phys. Rev. B. 56 12847 (1997) I. Souza et al., ibid. 65, 035109 (2001)

Max loc Wannier

molecular-orbital like

Hopping between molecular orbital

$$t_{m\mathbf{R}n\mathbf{R}'} = \left\langle w_{m\mathbf{R}} \left| \mathcal{H}_{_{KS}} \left| w_{n\mathbf{R}'} \right\rangle \right.$$

YN-Nakamura-Arita, Phys. Rev. B 85, 155452 (2012)

Interaction between electrons

+

Coulomb interaction

Interaction mediated by phonons (lattice vibration)

U: intraorbital U': interorbital $J_{\rm H}$: exchange

repulsive

 U_{ph} : intraorbital U'_{ph} : interorbital J_{ph} : exchange

attractive

Types of intramolecular interaction

Interorbital (opposite spin)

• Interorbital (same spin)

• Pair hopping

Ab initio downfolding for electron-phonon coupled systems

Low-energy models for electron-phonon coupled systems:

$$\begin{split} & \mathcal{H} = \sum_{\mathbf{k}} \sum_{ij} \left[\mathcal{H}_{0}^{(\mathbf{w})}(\mathbf{k}) \right]_{ij} c_{i\mathbf{k}}^{\sigma\dagger} c_{j\mathbf{k}}^{\sigma} + \sum_{\mathbf{q}} \sum_{\mathbf{k}\mathbf{k'}} \sum_{ij,i'j'} \sum_{\sigma\sigma'} U_{ij,i'j'}^{(p)}(\mathbf{q}) c_{i\mathbf{k}+\mathbf{q}}^{\sigma\dagger} c_{i'\mathbf{k'}}^{\sigma'\dagger} c_{j'\mathbf{k'}+\mathbf{q}}^{\sigma} c_{j\mathbf{k}}^{\sigma} \right. \\ & + \sum_{\mathbf{q}\nu} \sum_{\mathbf{k}} \sum_{ij} \sum_{\sigma} g_{ij}^{(p)\nu}(\mathbf{k},\mathbf{q}) c_{i\mathbf{k}+\mathbf{q}}^{\sigma\dagger} c_{j\mathbf{k}}^{\sigma} \left(b_{\mathbf{q}\nu} + b_{-\mathbf{q}\nu}^{\dagger} \right) + \sum_{\mathbf{q}\nu} \omega_{\mathbf{q}\nu}^{(p)} b_{\mathbf{q}\nu}^{\dagger} b_{\mathbf{q}\nu} \end{split}$$

i,j: orbital (Wannier) indices (w): Wannier gauge σ : spin index $O^{(p)}$: the quantity with constraint (partially screened)

Constrained random phase approximation (cRPA)

F. Aryasetiawan et al., Phys. Rev. B. 70 19514 (2004)

Constrained RPA

```
F. Aryasetiawan et al., Phys. Rev. B. 70 19514 (2004)
```

Screened Coulomb interaction W (RPA)

$$W = (1 - v\chi_{0})^{-1}v$$

$$\chi_{0}(\mathbf{r}, \mathbf{r}') = \underbrace{\sum_{i,j} \frac{f_{i}(1 - f_{j})}{\epsilon_{i} - \epsilon_{j}}}_{ij} [\phi_{i}^{*}(\mathbf{r})\phi_{j}(\mathbf{r})\phi_{j}^{*}(\mathbf{r}')\phi_{i}(\mathbf{r}') + \text{c.c.}]$$

$$x_{0} = \sum_{O \mapsto T} + \sum_{T \mapsto V} + \sum_{O \mapsto V} + \sum_{T \mapsto T}$$

$$\mathbf{1} \quad \mathbf{2} \quad \mathbf{3} \quad \mathbf{4}$$

$$K_{cRPA} = \mathbf{1} + \mathbf{2} + \mathbf{3} + \mathbf{4} \mathbf{4} \mathbf{4}$$

$$W_{eff} = (1 - v\chi_{cRPA})^{-1}v$$

$$W_{eff} = (1 - v\chi_{cRPA})^{-1}v$$

$$U_{\mu\nu} = \int d\mathbf{r} \int d\mathbf{r}' |\psi_{\mu}(\mathbf{r})|^{2} W_{eff}(\mathbf{r}, \mathbf{r}')|\psi_{\nu}(\mathbf{r}')|^{2}$$

$$v: \text{ bare Coulomb interaction} \quad \Psi: \text{ Wannier function}$$

Interaction parameters for C₆₀ superconductors

YN-Nakamura-Arita, Phys. Rev. B 85, 155452 (2012)

- U ~1 eV > W ~ 0.5 eV → strongly correlated
 J_H ~ 0.035 eV → very small compared to U
- V ~ 0.25-0.30 eV

Ab initio downfolding for electron-phonon coupled systems

Low-energy models for electron-phonon coupled systems:

$$\begin{split} \mathcal{H} &= \sum_{\mathbf{k}} \sum_{ij} \left[\mathcal{H}_{0}^{(\mathbf{w})}(\mathbf{k}) \right]_{ij} c_{i\mathbf{k}}^{\sigma\dagger} c_{j\mathbf{k}}^{\sigma} + \sum_{\mathbf{q}} \sum_{\mathbf{k}\mathbf{k'}} \sum_{ij,i'j'} \sum_{\sigma\sigma'} U_{ij,i'j'}^{(p)}(\mathbf{q}) c_{i\mathbf{k}+\mathbf{q}}^{\sigma\dagger} c_{i'\mathbf{k'}}^{\sigma'} c_{j'\mathbf{k'}+\mathbf{q}}^{\sigma} c_{j\mathbf{k}}^{\sigma} \\ &+ \sum_{\mathbf{q}\nu} \sum_{\mathbf{k}} \sum_{ij} \sum_{\sigma} g_{ij}^{(p)\nu}(\mathbf{k},\mathbf{q}) c_{i\mathbf{k}+\mathbf{q}}^{\sigma\dagger} c_{j\mathbf{k}}^{\sigma} \left(b_{\mathbf{q}\nu} + b_{-\mathbf{q}\nu}^{\dagger} \right) + \sum_{\mathbf{q}\nu} \omega_{\mathbf{q}\nu}^{(p)} b_{\mathbf{q}\nu}^{\dagger} b_{\mathbf{q}\nu} \\ & \text{phonon part} \\ \\ & \text{i,j: orbital (Wannier) indices} \qquad (w): Wannier gauge \qquad \sigma: \text{spin index} \end{split}$$

 $O^{(p)}$: the quantity with constraint (partially screened)

Constrained density-functional perturbation theory (cDFPT) YN, K. Nakamura, and R. Arita, Phys. Rev. Lett. 112, 027002 (2014) YN and R. Arita, arXiv:1509.01138.

Density-functional perturbation theory (DFPT)

S. Baroni et al, Rev. Mod. Phys. 73, 515 (2001).

electron-phonon coupling

$$\omega = \sqrt{\frac{k}{m}}$$

 $\omega = k_{\rm ion} + k_{\rm el}$

phonon frequency

http://monoist.atmarkit.co.jp/feledev/ articles/heat/01/netsu01_05.gif

- ∞

 $g_{\mu\nu} = \langle \psi_{\mu} | \Delta V | \psi_{\nu} \rangle$ $\Delta V = \Delta V_{\rm ion} + \Delta V_{\rm el}$

 $k_{
m el}$ and $\Delta V_{
m el}$ are related with the electron-density response to ionic displacement

density-functional perturbation

S. Baroni *et al*, Rev. Mod. Phys. **73**, 515 (2001).

Phonon frequency and electron-phonon coupling

Phonon frequencies $\omega_{\mathbf{q}\nu}$ and **electron-phonon couplings** $g_{n'n}^{\nu}(\mathbf{k},\mathbf{q})$ are given by (for simplicity we consider the case where there is one atom with mass M in the unit cell)

$$\begin{split} & \underbrace{D(\mathbf{q})}_{\mathbf{Q}\mathbf{v}}\mathbf{e}_{\nu}(\mathbf{q}) = \omega_{\mathbf{q}\nu}^{2}\mathbf{e}_{\nu}(\mathbf{q}) & \text{v: phonon mode} \\ & \mathbf{y}_{\text{n'n}}(\mathbf{k}, \mathbf{q}) = \left\langle \psi_{n'\mathbf{k}+\mathbf{q}} \middle| u_{0}\mathbf{e}_{\nu}(\mathbf{q}) \cdot \frac{\partial V_{SCF}(\mathbf{r})}{\partial \mathbf{u}(\mathbf{q})} \middle| \psi_{n\mathbf{k}} \right\rangle & u_{0} = \sqrt{\frac{\hbar}{2M\omega_{\mathbf{q}\nu}}} & \text{: characteristic} \\ & u_{0} = \sqrt{\frac{\hbar}{2M\omega_{\mathbf{q}\nu}}} & \text{: characteristic} \\ & \text{length scale} \\ & \text{Potential change due to the ionic displacement} \\ \\ \text{where} & \left[D(\mathbf{q}) \right]_{\alpha\alpha'} = \frac{1}{M} \frac{\partial^{2}E}{\partial u_{\alpha}^{*}(\mathbf{q}) \partial u_{\alpha'}(\mathbf{q})} = \frac{1}{M} \begin{bmatrix} C(\mathbf{q}) \\ a\alpha' \\ & \text{Interatomic force constant} \\ (\text{"spring constant}) \\ & n(\mathbf{r}): \text{ electron ground-state energy} \\ & \alpha: \text{ cartesian coordinates } (x,y,z) \\ & n(\mathbf{r}): \text{ electron density} \\ & \left[C(\mathbf{q}) \right]_{\alpha\alpha'} = \frac{1}{N} \begin{bmatrix} \int \left(\frac{\partial n(\mathbf{r})}{\partial u_{\alpha}(\mathbf{q})} \right)^{*} \frac{\partial V_{ion}(\mathbf{r})}{\partial u_{\alpha'}(\mathbf{q})} d\mathbf{r} + \int n(\mathbf{r}) \frac{\partial^{2}V_{ion}(\mathbf{r})}{\partial u_{\alpha'}(\mathbf{q})} d\mathbf{r} + \frac{\partial E_{N}}{\partial u_{\alpha}^{*}(\mathbf{q})\partial u_{\alpha'}(\mathbf{q})} \\ & \text{ renormalizing (softening)} \\ & \text{bare} \\ & \frac{\partial V_{SCF}(\mathbf{r})}{\partial u(\mathbf{q})} = \frac{\partial V_{ion}(\mathbf{r})}{\partial u(\mathbf{q})} + \int \left(\frac{e^{2}}{|\mathbf{r} - \mathbf{r}'|} + \frac{dV_{xc}(\mathbf{r})}{dn} \delta(\mathbf{r} - \mathbf{r}') \right) \frac{\partial n(\mathbf{r}')}{\partial u(\mathbf{q})} d\mathbf{r}' \\ & \text{bare} \\ & \text{Hartree + exchange correlation terms (screening)} \end{aligned}$$

Constrained DFPT

YN, K. Nakamura, and R. Arita, PRL **112**, 027002 (2014) YN and R. Arita, arXiv:1509.01138.

Phonon-mediated interactions

Phonon-mediated interaction for fcc A₃C₆₀

YN et al., Science Advances 1, e1500568 (2015)

	small	Lattice constant			> large
	K ₃ C ₆₀	Rb ₃ C ₆₀	Cs ₃ C ₆₀	Cs ₃ C ₆₀	Cs ₃ C ₆₀
U _{ph} (0) [eV]	-0.15	-0.14	-0.11	-0.12	-0.13
<i>U</i> ′ _{ph} (0) [eV]	-0.053	-0.042	-0.013	-0.022	-0.031
J _{ph} (0) [eV]	-0.050	-0.051	-0.051	-0.051	-0.052

$$U_{\rm ph} = V_{ii,ii}, \quad U'_{\rm ph} = V_{ii,jj}, \quad J_{\rm ph} = V_{ij,ij} \qquad \qquad V_{ij,kl} =$$

 $> |J_{ph}(0)| \sim 0.05 \text{ eV} > J_{H} \sim 0.035 \text{ eV} \rightarrow \text{negative exchange interaction}$

→ negative exchange interaction (Inverted Hund's rule)

The relation $U'_{\rm ph} \sim U_{\rm ph} - 2J_{\rm ph}$ holds

Effective intramolecular interaction

Model Analysis

Extended dynamical mean-field theory (extended DMFT)
 DMFT+ dynamical screening coming from off-site Coulomb interactions

A. M. Sengupta and A. Georges, PRB 52, 10295 (1995); Q. Si and J. L. Smith, PRL 77, 3391 (1996).

+ self consistent conditions

- ✓ describes the local correlation (intramolecular quantum fluctuations) accurately
- \checkmark One of the most reliable methods to study three-dimensional *s*-wave SC

DMFT analysis using realistic Hamiltonian \rightarrow Jan's talk

Phase diagram

- ✓ s-wave SC next to Mott phase with $T_c \simeq 30$ K
- ✓ Critical volume
- ✓ Slope between PM and PI

Property of metal-insulator transition at 40 K (above T_c)

YN et al., Science Advances 1, e1500568 (2015).

 \succ (210) configurations dominate (because of U' > U)

> Mott physics: filling is (nearly) fixed at half-filling in the insulating phase

no ferro-orbital order, i.e., six types of (210) configurations ($\{n_1, n_2, n_3\} = \{2, 1, 0\}, \{0, 2, 1\}, \{1, 0, 2\}, \{2, 0, 1\}, \{1, 2, 0\}, \{0, 1, 2\}$) are degenerate

Superconducting mechanism

YN et al., Science Advances 1, e1500568 (2015).

Stability of superconductivity at 10 K

realistic	(pair hopping)=0	(spin flip)=0	U' _{eff} < U _{eff} (U' _{ph} (new) = U _{ph})
SC	Non SC	SC	Non SC

- > The crucial factors for *s*-wave superconductivity are
 - 1. Generation of intraorbital pair by $U'_{eff} > U_{eff}$ strong correlation helps it by suppressing kinetic energy
 - 2. Tunneling of the pairs due to pair-hopping term (Suhl-Kondo mechanism)

H. Suhl et al. (1959); J. Kondo (1963)

strong electron correlations and phonons cooperatively work for SC (unconventional)

Summary

- > Ab initio derivation of low-energy model
 - $\checkmark \quad U, U' > W \rightarrow \text{ strongly correlated}$
 - ✓ J → effectively inverted
- Unbiased EDMFT analysis
 - ✓ Treat both Coulomb and electron-phonon interactions
- Quantitative and qualitative reproduction of the phase diagram
 - ✓ *T*_c ~ 30K
 - ✓ Mott phase next to SC phase
- Superconducting mechanism
 - ✓ Generation of intraorbital pairs by U' > U (strong correlation helps)
 - ✓ Tunneling of the pair due to the pair-hopping term (Suhl-Kondo mechanism)

YN et al., Science Advances 1, e1500568 (2015).

Outlook: light-induced superconducting-like phase (Tc > 100 K) in K_3C_{60}

M. Mitrano et al., arXiv: 1505.04529

Alkali-doped fullerides

fcc A₃C₆₀ (A=K, Rb, Cs)

$$K_{3}C_{60} : T_{c} = 19 \text{ K}$$

 $Rb_{3}C_{60} : T_{c} = 29 \text{ K}$
 $Cs_{3}C_{60} : T_{c} = 35 \text{ K}$

O.Gunnarsson Rev.Mod.Phys. 69, 575 (1997) Ganin et al, Nature 466,221(2010)

• A15 Cs₃C₆₀

$$T_{c} = 38 \text{ K}$$

A.Ganin et al Nature Mater. 7,367-371(2008) Y.Takabayashi et al Science 323,1285-1590(2009) band structure (fcc K₃C₆₀)

✓ 3 orbital, half-filling

✓ Molecular orbital

+ small hopping between them

Effective low-energy Hamiltonian

Ab initio Hamiltonian

$$H_{FP} = \sum_{i} \left(-\frac{\hbar^2}{2m} \Delta_i - \sum_{\alpha} \frac{Z_{\alpha} e^2}{|\mathbf{R}_{\alpha} - \mathbf{r}_i|} \right) + \frac{1}{2} \sum_{ij} \frac{e^2}{r_{ij}} + \sum_{\alpha < \beta} \frac{Z_{\alpha} Z_{\beta} e^2}{|\mathbf{R}_{\alpha} - \mathbf{R}_{\beta}|}$$

global energy scale (> 100,000 K ~ 10 eV)

Effective Hamiltonian

$$H_{e\!f\!f} = \sum_{\sigma} \sum_{i \neq j} t_{ij} a^{\dagger}_{i\sigma} a_{j\sigma} + \sum_{ijkl} \sum_{\sigma\rho} W_{ijkl} a^{\dagger}_{i\sigma} a^{\dagger}_{k\rho} a_{l\rho} a_{j\sigma}$$

low-energy phenomena (\sim 50 K)

Phonon frequency

Red: partially renormalized Blue: fully renormalized

✓ Frequencies of the phonons coupled to t_{1u} electrons are renormalized ✓ Tiny momentum dependence → Einstein-like phonon

Dynamical structure of U_{eff} and U'_{eff}

✓ $U'_{\rm eff}$ > $U_{\rm eff}$ for $\omega \lesssim 0.2\,$ eV (difference is small ~ 5 %)

- ✓ Consider the dynamical screening effects through off-site interactions and electron phonon coupling (we use static $J_{eff} = J_{ph}(0)+J_{H}$)
- ✓ Effects of off-site Coulomb interactions
 - \rightarrow U and U' are reduced by ~ 0.27 eV

Phase diagram

- ✓ s-wave SC next to Mott phase with T_c ~ 30 K
- ✓ Critical volume
- $\checkmark\,$ Slope between PM and PI

Quantity at 40 K (above T_c)

YN et al., Science Advances 1, e1500568 (2015).

Interaction between electrons

 $> |J_{ph}| \sim 0.05 \text{ eV} > J_{H} \sim 0.035 \text{ eV} \rightarrow \text{Inverted Hund's rule}$

Density functional theory (DFT)

Weakly correlated material

Material dependence (e.g. difference between K_3C_{60} and Rb_3C_{60})

Strongly correlated material

model calculation

Solving the lattice model (e.g. Hubbard model) accurately

$$\mathcal{H} = -t \sum_{\langle i,j \rangle} \sum_{\sigma} (\hat{c}^{\dagger}_{i\sigma} \hat{c}_{j\sigma} + \hat{c}^{\dagger}_{j\sigma} \hat{c}_{i\sigma}) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$
hopping Coulomb repulsion

†

Solver: dynamical mean-field theory (DMFT), variational Monte Carlo, path-integral renormalization group, tensor network, density matrix renormalization group

Describes the effect of strong electron correlations (e.g. Mott insulator)

Realistic calculation (what is an appropriate value for t, U?)