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Overview

electrons and strong correlations

„easy“ in 1D: Luttinger liquid

2D & 3D: hard

Coupled-wire constructions: 
couple 1D quantum wires to obtain 2D system

Quantum LEGO: 
couple 2D building blocks to  

obtain 3D system



• In 1D: interacting electrons form „Luttinger liquid“, not Fermi liquid

Solving an interacting 1D system: Luttinger liquid

low energy excitations: density waves = bosons!
density-density interactions can be treated exactly!
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Coupled-wire constructions: going from 1D to 2D
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• Integer quantum Hall state & its edge mode:



Coupled-wire constructions: going from 1D to 2D

~B

• Integer quantum Hall state & its edge mode: 

• Coupled-wire construction:

tt

Incomplete list of references: 

• Abelian FQHE (Laughlin states): Kane, Mukhopadhyay, Lubensky, PRL 88, 036401 (2002) 
• Non-Abelian FQHE: Teo, Kane, PRB 89, 085101 (2014), arXiv in 2011 

• Laughlin-like Abelian topological insulators: Klinovaja, Tserkovnyak, PRB 90, 115426 (2014) 
• Non-Abelian topological insulators: Sagi, Oreg, PRB 90, 201102(R) (2014) 
• Symmetry-based classification: Neupert, Chamon, Mudry, Thomale, PRB 90, 205101 (2014) 
• Chern-Simons description: Santos, Huang, Gefen, Gutman, PRB 91, 205141 (2015) 
• Non-Abelian quantum spin liquids: TM, Neupert, Greiter, Thomale, PRB 91, 241106(R) (2014)   
• Spontaneous TRS symmetry breaking in fractional TIs: TM, Sela, PRB 90, 235425 (2014) 



                                         3D• Constructing topological       systems:

Quantum LEGO in 3D
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Integer quantum Hall blocks (no electron-electron interactions)



3D system as array of building blocks

=
=

right-moving edge mode

left-moving edge mode

= strong hopping (bulk)



Non-interacting integer quantum Hall blocks: limits

tz1 strongest:  Normal Insulator (NI)
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Non-interacting integer quantum Hall blocks

Realization: non-interacting fermionic model

• can be solved exactly 
• (almost) same low-energy theory as

Weyl Semimetal in a Topological Insulator Multilayer
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We propose a simple realization of the three-dimensional (3D) Weyl semimetal phase, utilizing a

multilayer structure, composed of identical thin films of a magnetically doped 3D topological insulator,

separated by ordinary-insulator spacer layers. We show that the phase diagram of this system contains a

Weyl semimetal phase of the simplest possible kind, with only two Dirac nodes of opposite chirality,

separated in momentum space, in its band structure. This Weyl semimetal has a finite anomalous Hall

conductivity and chiral edge states and occurs as an intermediate phase between an ordinary insulator and

a 3D quantum anomalous Hall insulator. We find that the Weyl semimetal has a nonzero dc conductivity at

zero temperature, but Drude weight vanishing as T2, and is thus an unusual metallic phase, characterized

by a finite anomalous Hall conductivity and topologically protected edge states.

DOI: 10.1103/PhysRevLett.107.127205 PACS numbers: 75.47.!m, 03.65.Vf, 71.90.+q, 73.43.!f

The recent discovery of time-reversal (TR) invariant
topological insulators (TIs) [1] has led to a surge of interest
in topological properties of the electronic band structure of
crystalline materials. TIs exhibit a bulk gap but gapless
surface states, whose gaplessness is protected by topology.
Remarkably, recent work has demonstrated that such a
surface-bulk correspondence can also be obtained even
when the bulk is gapless, by virtue of point touchings of
nondegenerate conduction and valence bands [2]. Such
accidental point touchings have been known to exist since
the earliest days of the theory of solids [3], but their
topological properties have been appreciated only much
more recently [2,4–6], and concrete materials, where they
may be found, have been proposed [2,6]. Nontrivial and
robust band touching requires either broken TR or inver-
sion [2,3,5], in which case the touching points acquire
topological character and thus give rise to stable phases
of matter. The band structure near these points can be
described by a massless two-component Dirac or Weyl
Hamiltonian:

H ¼ #vF! $ k; (1)

where k is the crystal momentum in the first Brillouin
zone (BZ), expanded near the band-touching point, ! is
the triplet of Pauli matrices, and the sign in front corre-
sponds to two different possible chiralities, characterizing
the point. Such Weyl fermions have been studied exten-
sively in high-energy physics, in particular, as a description
of neutrinos [4], and may be viewed as topological defects
(hedgehogs) in momentum space [4]. Any perturbation of
Eq. (1) only shifts the degeneracy point in energy or
momentum but does not remove it: An isolated Weyl
fermion in this sense possesses an absolute topological
stability (this is in contrast to 2D massless Dirac fermions
in graphene, where inversion symmetry of the honeycomb
lattice is essential for their stability). Very general consid-

erations show that Dirac degeneracy points can occur only
in pairs of opposite chirality [7] and can thus be eliminated
by pairwise annihilation. When the TR or inversion sym-
metry is broken, however, the Weyl fermions are separated
in momentum space and thus, assuming translational sym-
metry remains intact, are still topologically stable.
Reference [2] has proposed a possible realization

of a Weyl semimetal with 24 Dirac nodes in iridium
pyrochlores, which are strongly correlated magnetic
materials (a different scenario for this material was
proposed in Ref. [8]). The purpose of this work is to
propose a much simpler realization of the Weyl semimetal,
not relying on strong correlations in a rather complex
material. The Weyl semimetal we propose also possesses
only two Dirac nodes, the smallest possible number, and
thus is in a sense the most elemental realization of this
phase of matter.
The material we propose is a multilayer heterostructure,

consisting of alternating layers of a 3D TI material, such as
Bi2Se3, and an ordinary insulator, which serves as spacer
material between the neighboring TI layers, as shown in
Fig. 1. The ability to grow ultrathin high-quality films of
Bi2Se3 has been clearly demonstrated in recent experi-
ments [9]. It is thus quite realistic to expect that a multi-
layer heterostructure, consisting essentially of a stack of
such thin films, can be fabricated by using available tech-
nology. The Hamiltonian, describing this heterostructure,
can be written as
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The first term in Eq. (2) describes the two (top and bottom)
surface states of an individual TI layer. We assume for
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Weyl phase as extended critical phase

Competing couplings of comparable strength

• no gap 
• topological 3D phase: Weyl semimetal (WS)



Integer quantum Hall blocks Fractional quantum Hall blocks
of Laughlin-type at ⌫ = 1/3
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Fractional Quantum Hall Effect in an Array of Quantum Wires

C. L. Kane, Ranjan Mukhopadhyay, and T. C. Lubensky
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
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We demonstrate the emergence of the quantum Hall (QH) hierarchy in a 2D model of coupled quantum
wires in a perpendicular magnetic field. At commensurate values of the magnetic field, the system can
develop instabilities to appropriate interwire electron hopping processes that drive the system into a
variety of QH states. Some of the QH states are not included in the Haldane-Halperin hierarchy. In
addition, we find operators allowed at any field that lead to novel crystals of Laughlin quasiparticles.
We demonstrate that any QH state is the ground state of a Hamiltonian that we explicitly construct.

DOI: 10.1103/PhysRevLett.88.036401 PACS numbers: 71.10.Pm, 71.27.+a, 73.43.Cd, 73.43.– f

The rich phenomenology of the quantum Hall (QH) ef-
fect provides a fertile setting for the study of correlated
electrons [1]. While the integer QH effect can be under-
stood in terms of the Landau quantization of noninteracting
electrons, the fractional QH state is a strongly correlated
quantum liquid, where electron-electron interactions play
an essential role. Motivated by Laughlin’s original varia-
tional wave function [2], a number of techniques have been
developed to describe the hierarchy of fractional QH states
[3], including composite fermion variational wave func-
tions [4] and Chern-Simons field theories based on bosons
[5,6] or fermions [7]. These have led to a deep under-
standing of the excitation spectrum of QH states and of
the structure of the QH hierarchy.

The purpose of this Letter is to develop a new formal-
ism, which reproduces the QH hierarchy in a model con-
sisting of a two-dimensional array of quantum wires in a
perpendicular magnetic field B. The model could be rele-
vant for semiconductor quantum wires, ropes of carbon
nanotubes, and for stripes that arise in QH systems in the
higher Landau systems [8]. Aside from the direct rele-
vance of the model, our calculations provide a novel, and
in many ways a simpler, approach to describe the fractional
QH effect. Given its success in treating the fractional QH
effect, it is likely that our technique will prove useful for
understanding other strongly correlated states.

We use the bosonization technique [9], developed for
one-dimensional systems, and relate the QH effect to cou-
pled Luttinger liquids. It has been shown recently [10–12]
that for a range of interwire charge and current interactions,
there is a phase in which interwire Josephson, charge- and
spin-density wave, and single-particle couplings are irrele-
vant. This sliding Luttinger liquid (SLL) or smectic metal
phase is the quantum analog of the sliding phase found
recently in DNA-lipid complexes and stacked XY mod-
els [13,14]. The SLL resembles a Luttinger liquid, with
transport properties that exhibit power-law singularities as
a function of temperature. It has also been demonstrated
[15] that in a magnetic field the phase space of SLL ex-
pands considerably.

We show that at commensurate magnetic fields the SLL
phase can be unstable to interwire electron hopping pro-

cesses that lead the formation of an energy gap and the
QH effect. The presence of the n ! 1 QH state in such a
model was first noted by Sondhi and Yang [15]. Our cal-
culation builds on this work. We systematically classify all
electron hopping operators and identify those that lead to
QH states. This construction leads to QH states which are
not in the Haldane-Halperin hierarchy [3]. We also show
that any QH state is the ground state of a Hamiltonian that
we explicitly construct.

We begin with a simple model of spinless electrons that
ignores both electron-electron interactions and tunneling
between the wires. In the Landau gauge A ! 2Byx̂, the
electronic dispersion has the simple form

Ej!k" !
h̄2

2m
!k 2 bj"2, (1)

where the integer j labels the wires, b ! eaB#h̄c, and a
is the separation between neighboring wires. This disper-
sion is characterized by level crossings, where the bands
associated with different wires intersect. Tunneling be-
tween the wires couples the bands, leading to anticross-
ings, as indicated in Fig. 1. The Fermi energy, EF , lies in
one of these gaps when the filling factor n ! 2kF#b is an
integer (here kF ! pne depends on the 1D electron den-
sity ne on each wire). In general, the gap at EF for n ! N

FIG. 1. A schematic diagram showing how the Landau lev-
els, denoted by the solid curves, arise due to coupling between
neighboring single-wire bands.
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(no electron-electron interactions)
(strong electron-electron interactions)



3D system as array of fractional building blocks

fractional quantum Hall



Normal Insulator 
(NI)

Fractional Quantum Anomalous Hall 
(FQAH)

Single Surface Fractional QAH 
(SSFQAH)

Fractional quantum Hall blocks: limiting cases



Fractional quantum Hall blocks: limiting cases

Competing couplings of equal strength: 
• no simple gapping of edge modes 
• analogue to Weyl semimetal?



• Consider                                        : only cosines due to       , no competition 

• Then: 

• Rewrite as single fermion scattering via refermionization

Factional quantum Hall blocks: limiting cases (2)
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fermions with  
charge e/3

Fractional quantum Hall blocks: critical phase?
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• Study                                               using

Fractional quantum Hall blocks: critical phase?
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sine-Gordon prefactors             : 
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(canonical fermions) (not canonical fermions)
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• Study                                               using

Fractional quantum Hall blocks: critical phase?
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Summary

Quantum LEGO: 
couple edge modes of 2D of building blocks 

to obtain 3D system
)

new tool for engineering  
and analysis of interacting 
topological 3D systems

Gapless phase of fractionally charged fermions? In progress!


