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Tunneling Junction 

• CNTL and CNTR  are left and right metallic leads 
 

• CNTQDA is a carbon nanotube quantum dot of length 2h with caged atom 
 

• Two tunnel barriers of length a 



Outline 

• Electronic properties of Carbon Nanotubes 
 

• Construction of tunnel junction consisting of two metallic 
leads and a QD with an atom on the CNT axis 
 

• Kondo Hamiltonian 
 

• Two regimes of the poor man’s scaling procedure 
 

• Conductance, entropy and specific heat 
 

• Conclusions 



Carbon Nanotubes 

• Two valleys near the points K and K’ of the first Brillouin zone 
 

• Degeneracy in both spin (↑, ↓) and isospin (or valley K, K′) quantum numbers 
 

• The energy spectrum of a semiconductor CNT is 
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Implanting an Atom on the CNT Axis 

• Van der Waals interaction between the 
caged atom and the CNT possesses 
minima and saddle points at 
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• Neighboring minima are separated by 
tunnel barriers of height Wb = 21.02 meV. 
 

• The caged atom performs small 
oscillations around the point R = (0,0). 



Tunnel Junction 

• Gate voltage is such that 0/3 < ϵF < Vd < Vb. 
 

• The CNT is divided on left and right leads, and the quantum dot separated one from 
another by the barriers. 
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Energy Levels of CNT(QD) 

• Fermi energy is below the single-electron level. 
 

• The ground state of the QD hosts solely the spin-1/2 caged atom. 
 

• The excited states contain one electron and the caged atom. Together, they form 
singlet (S) and triplet (T) states. 
 

• Exchange interaction between the atom and electron gives the singlet-triplet 
splitting with ϵS > ϵT 

Exchange interaction 

A 
CNT 



Kondo Hamiltonian 
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• n,qq΄ is the electron density operator 
• s,qq΄ is the spin density operator 
• S is the spin of the quantum dot 
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• S > T        Jqq’
 > 0       the exchange interaction is antiferromagnetic 

 
•   is a good quantum number        two channel Kondo effect 

t is a tunneling rate 



Single-Channel and Two-Channel 
Kondo Effect 

• Single channel Kondo  effect: the spin of 
the dot is fully screened by the conduction 
band electrons 
 

• Conductance behaves as T2 – Fermi liquid 
fixed point 
 

• Two channel Kondo effect: the spin of the 
dot is over-screened by the conduction 
band electrons 
 

• Conductance behaves as T1/2 – non-Fermi 
liquid fixed point 
 

• Effect of the two channel Kondo effect is 
observable just in the strong coupling limit 
T < TK 

1CKE 

2CKE 



Poor Man’s Scaling Technique 
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States to be 
removed 

 Strong correlation between the QD and the leads – 
the perturbation theory cannot be applied 



Two Regimes of the Poor Man’s Scaling 
Procedure 

D0 > ϵF – 0/3: There are two different 
regimes of the poor man’s scaling 
procedure 
 
• D0 > D > D1 = ϵF − 0/3: 
ϵF−D is below the bottom of the 
conduction band 
 
• D < D1: 
ϵF−D is above the bottom of the 
conduction band 



Scaling of Couplings 

k and j as functions of D for T = 18 meV and different values of ϵF. Here S−T=120meV, 
curves (1)–(6) correspond to ϵF = 1.5, 1.6, 1.7, 1.9, 2.1, and 2.3 meV, respectively. 

Note the nonmonotonic behavior of the curves (1), (2) and (3) [ϵF ≤ 1.7 meV]: 
When D > D1, the effective coupling  j (D) increases to the value over j∗, and then within 
the interval D < D1, j(D) decreases approaching  j*. 



Kondo Temperature and Conductance 

• TK as a function of T and different values of ϵF .  
• The conductance G(T) as function of T for ϵT = 18 meV and different values of ϵF. 

 
Here curves (1)–(6) correspond to ϵF = 1.5, 1.6, 1.7, 1.9, 2.1, and 2.3 meV, respectively. 
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Note the nonmonotonic behavior of G(T) for ϵF ≤ 1.7 meV [curves (1)–(3)]. This exotic 
behavior is caused by the nonmonotonicity of j (T ). 

T (meV) 



Entropy and specific heat 

• The entropy Simp(T) as function of T for ϵT = 18 meV and different values of ϵF. 
 

Here curves (1)–(6) correspond to ϵF = 1.5, 1.6, 1.7, 1.9, 2.1, and 2.3 meV, respectively. 
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Conclusions 

• We demonstrate the possibility of tuning a semiconductor CNT into a tunnel 
junction consisting of two CNT metallic leads and a CNT quantum dot 
 

• Isospin (the valley quantum number) is a good quantum number that results 
in two channel Kondo effect 
 

• The proposed device reveals two scaling regimes in which the running 
coupling constant behaves differently 
 

• Nonmonotonic behavior of the conductance, entropy and specific heat as 
function of temperature enables the physics of the 2CKE to be visible also in 
the weak coupling regime 



Scaling Equations: 
First Interval 
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The scaling equations are, 

Solution of the scaling equations is, 
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D0 > D > D1,  k(D0) = k0,  j(D0) = j0. 



Scaling Equations: 
Second Interval 
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The scaling equation is, 

Solution of the scaling equation is, 

 
 

.ln
21

21
ln2

11 1

1

1

1



















-

-
-

D

D

jj

jj

jj

The scaling invariants are 

.
2

1
,

1
exp,

1
exp *

*1

*

1

1 







-








- j

j
DT

j
DTK


