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Tunneling Junction

CNTL CNTQDA CNTR

e CNTL and CNTR are left and right metallic leads
e CNTQDA is a carbon nanotube quantum dot of length 2h with caged atom

e Two tunnel barriers of length a



Outline

Electronic properties of Carbon Nanotubes

Construction of tunnel junction consisting of two metallic
leads and a QD with an atom on the CNT axis

Kondo Hamiltonian
Two regimes of the poor man’s scaling procedure
Conductance, entropy and specific heat

Conclusions



Carbon Nanotubes

e Two valleys near the points K and K’ of the first Brillouin zone
* Degeneracy in both spin (%, {') and isospin (or valley K, K’) qguantum numbers

* The energy spectrum of a semiconductor CNT is
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Implanting an Atom on the CNT Axis
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Tunnel Junction

CNIL CNTQDA CNTR

A, (x)= —%—vo O(x|-h-a)+V, 6(h—|x)+V, ©(x|-h)elh +a—|x|),
* Gate voltage is such that A,/3 < e <V < V,.

 The CNT is divided on left and right leads, and the quantum dot separated one from
another by the barriers.



Energy Levels of CNT(QD)

CNTL CNTQDA

* Fermi energy is below the single-electron level.
* The ground state of the QD hosts solely the spin-1/2 caged atom.

* The excited states contain one electron and the caged atom. Together, they form
singlet (S) and triplet (T) states.

* Exchange interaction between the atom and electron gives the singlet-triplet
splitting with e > €;

Exchange interaction

CNT



Kondo Hamiltonian

Hy = Z(Keqeq-nf,qq' v ‘]eqeq-(s'sé,qq‘))’
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N,y 1S the electron density operator
Szqq IS the spin density operator
S is the spin of the quantum dot
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t_is a tunneling rate

&> &= J. ., >0= the exchange interaction is antiferromagnetic
q*q

& is a good quantum number = two channel Kondo effect



Single-Channel and Two-Channel
Kondo Effect

1CKE

2CKE

GIG,

TITk

Single channel Kondo effect: the spin of
the dot is fully screened by the conduction
band electrons

Conductance behaves as T> — Fermi liquid
fixed point

Two channel Kondo effect: the spin of the
dot is over-screened by the conduction
band electrons

Conductance behaves as T2 — non-Fermi
liquid fixed point

Effect of the two channel Kondo effect is
observable just in the strong coupling limit
T<Ty



Poor Man’s Scaling Technique

) 77777/,

» Strong correlation between the QD and the leads —
the perturbation theory cannot be applied
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Two Regimes of the Poor Man’s Scaling
Procedure

€ D, > €. — A,/3: There are two different
regimes of the poor man’s scaling
procedure

J QQ>D>DliEE—_AQ@Z
€—D is below the bottom of the
conduction band

* D<D;:

Y =

l l r €D is above the bottom of the
—kFp 0 kr conduction band




0.0t

(5)»

(1)
(2)
(3)
4)

Scaling of Couplings
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k and j as functions of D for ¢; = 18 meV and different values of €. Here &¢.~¢,=120meV,
curves (1)—(6) correspond to e, =1.5, 1.6, 1.7, 1.9, 2.1, and 2.3 meV, respectively.

Note the nonmonotonic behavior of the curves (1), (2) and (3) [e; < 1.7 meV]:
When D > D,, the effective coupling j (D) increases to the value over j*, and then within
the interval D < D, j(D) decreases approaching ;.



Kondo Temperature and Conductance
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e T, as a function of ¢, and different values of ¢, .
* The conductance G(T) as function of T for e, = 18 meV and different values of ¢,.

Here curves (1)—(6) correspond to €, = 1.5, 1.6, 1.7, 1.9, 2.1, and 2.3 meV, respectively.
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Note the nonmonotonic behavior of G(T) for €, < 1.7 meV [curves (1)—(3)]. This exotic
behavior is caused by the nonmonotonicity of j (T ).
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Entropy and specific heat
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* The entropy S;.,,(T) as function of T for €; = 18 meV and different values of €.

Here curves (1)—(6) correspond to €, = 1.5, 1.6, 1.7, 1.9, 2.1, and 2.3 meV, respectively.
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Conclusions

We demonstrate the possibility of tuning a semiconductor CNT into a tunnel
junction consisting of two CNT metallic leads and a CNT quantum dot

Isospin (the valley quantum number) is a good quantum number that results
in two channel Kondo effect

The proposed device reveals two scaling regimes in which the running
coupling constant behaves differently

Nonmonotonic behavior of the conductance, entropy and specific heat as
function of temperature enables the physics of the 2CKE to be visible also in
the weak coupling regime



Scaling Equations:
First Interval

The scaling equations are,
ok :_kz_sjz o _
oInD 16 oInD

D, > D > D,, k(D) = ky, j(Dg) = jo

Solution of the scaling equations is,
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Scaling Equations:
Second Interval

The scaling equation is, \ /
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Solution of the scaling equation is,
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The scaling invariants are
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