

Why is Sr₂IrO₄ insulating and Sr₂RhO₄ is not? Effects of spin-orbit coupling and structural distortions

Markus	Aichhorn

Portorož, 25. 6. 2012

Correlated materials are

- 3d transition metals and & their oxides
- Rare earth (Lanthanides 4f) and Actinides (5f)
- 4d transition metal oxides : Sr₂RuO₄, SrTcO₃...

4d states are considered as less localized and correlated than 3d 5d states are considered as less localized and correlated than 4d

 Sr_2RuO_4 (4d⁴)

Damascelli et al, Phys Rev Lett 85, 5194 (2000)

 Sr_2RhO_4 (4d⁵)

Kim et al, Phys Rev Lett 101, 076402 (2009)

• A structure similar to La₂CuO₄ or Sr₂RuO₄ but with distortions :

 IrO_6 octahedra are rotated around the z axis by about 11° .

Klein & Terasaki, J. Phys.: Cond. Mat.20 (2008)

• An insulator at all temperatures but Ir atoms accommodate 5 electrons.

An optical gap at 300 K (room temperature) of 0.26 eV. Moon et al, Phys Rev B 80, 195110 (2009)

• An important role of the spin-orbit coupling ($\zeta_{so} \sim 0.4 \text{ eV}$) according to resonant X-ray scattering.

Kim et al, Science 323, 1329 (2009)

Portorož, 25. 6. 2012

Kim et al, Phys Rev Lett 101, 076402 (2009) Kim et al, Science 323, 1329 (2009)

The spin-orbit interaction is a relativistic correction to the Schrödinger equation.

$$H_{SO} = \frac{\hbar^2}{2m_0^2 c^2} \mathbf{S} \cdot [\nabla V(\mathbf{r}) \times \mathbf{p}] \quad \text{and for an atom:} \quad H_{SO} = \frac{1}{2m_0^2 c^2} \frac{1}{r} \frac{dV}{dr} (\mathbf{L} \cdot \mathbf{S}) = \zeta_{SO} \mathbf{L} \cdot \mathbf{S}.$$

The energy splitting induced by the spin-orbit coupling scales roughly as Z^4 .

Iron (Fe)	(Z= 26)	ζ _{so} ~ 0.050 eV
Copper (Cu)	(Z= 29)	$\zeta_{\rm so}$ ~ 0.103 eV
Ruthenium (Ru)	(Z= 44)	ζ _{so} ~ 0.161 eV
Rhodium (Rh)	(Z= 45)	$\zeta_{so} \sim 0.191 \text{ eV}$
Iridium (Ir)	(Z= 77)	ζ _{so} ~ 0.4 eV
Bismuth (Bi)	(Z= 83)	ζ _{so} ~ 1.5 eV

itpep

Kim et al, Phys Rev Lett 101, 076402 (2009) Kim et al, Science 323, 1329 (2009)

Because of the crystal field induced by the oxygen, the 5d states are split into e_g , j_{eff} =1/2 and j_{eff} =3/2 multiplets.

itnep

Lichtenstein & Katsnelson, PRB 57, 6884 (1998) ; Anisimov et al, J. Phys. Cond Mat. 9, 7359 (1997) K. Held, Adv. Phys. 56, 829 (2007)

Self consistent implementation in Wien2K: M. Aichhorn et al., PRB 2009, PRB 2011

Portorož, 25. 6. 2012

Distortions and SO coupling produces an effective one-band problem

Interaction parameters estimated by cRPA:

U = 2.2 eV J = 0.3 eV

Insulating state with a gap of about 0.26 eV

C. Martins, M. Aichhorn, L. Vaugier, and S. Biermann, PRL 107, 266404 (2011)

Experimental spectrum

Calculated orbitally resolved spectral density

 Sr_2IrO_4 is a $j_{eff}=1/2$ Mott insulator. (U=2.2 eV and J= 0.3 eV)

neither a magnetic order, nor an orbital order but a "spin-orbital order"

The suppression of spin-orbital fluctuations is a consequence of the combined effect of :

- Spin orbit coupling ($\zeta_{so} \sim 0.4 \text{ eV}$)
- the structural distortions (rotation of 11° of the IrO₆ octahedra)

10

• The same crystal structure as Sr_2IrO_4 :

 RhO_6 octahedra are rotated around the z axis by about 11° a(Sr_2RhO_4) = 5.44 Å ; c(Sr_2RhO_4) = 25.75 Å a(Sr_2IrO_4) = 5.49 Å ; c(Sr_2IrO_4) = 25.77 Å

• A paramagnetic metal down to 36 mK. Moon et al. Phys Rev B 74, 113104 (2006)

• Spin-orbit coupling, electronic correlations and structural distortions are necessary to reproduce the Fermi surface within LDA+SO+U. Haverkort et al, Phys Rev Lett 101, 026406 (2008) Liu et al, Phys Rev Lett 101, 026408 (2008)

Sr₂RhO₄ (4d⁵)

• The Kohn-Sham band structure of Sr_2RhO_4 and Sr_2IrO_4 are qualitatively similar.

- But : the bandwidths of Sr_2RhO_4 are smaller than that of Sr_2IrO_4 .
 - the spin-orbit splitting in Sr_2RhO_4 is half of that of Sr_2IrO_4 .

Rhodium (Rh)	ζ _{so} ~ 0.191 eV
Eridium (Ir)	ζ _{so} ~ 0.4 eV

 Sr_2RhO_4 has identical crystal structure as Sr_2IrO_4

But smaller SO coupling 0.2

Charge repartition between the $j_{eff}=1/2$ state and the two $j_{eff}=3/2$ states are different.

Charge	Sr ₂ IrO ₄	Sr ₂ RhO ₄
j _{eff} =1/2	1.14	1.40
j _{eff} =3/2 m _j = 1/2	2.00	1.96
j _{eff} = 3/2 m _j = 3/2	1.96	1.64

Sr₂RhO₄ is a "three-quarter-filled two-bands" system

14

Charge	LDA	LDA+DMFT
j _{eff} =1/2	1.40	1.26
j _{eff} =3/2 m _j = 1/2	1.96	2.00
j _{eff} = 3/2 m _j = 3/2	1.64	1.70

Portorož, 25. 6. 2012

Charge	LDA	LDA+DMFT
j _{eff} =1/2	1.40	1.26
j _{eff} =3/2 m _j = 1/2	1.96	2.00
j _{eff} = 3/2 m _j = 3/2	1.64	1.70

Portorož, 25. 6. 2012

Ab-initio (LDA+SO+DMFT) calculations for Sr_2IrO_4 and Sr_2RhO_4 show that

- Sr_2IrO_4 is a $j_{eff} = 1/2$ Mott insulator.
- Sr₂RhO₄ is a partially spin-orbital polarized metal.

Difference due to different strength of Spin-Orbit coupling!

Cyril Martins

Loig Vaugier

Silke Biermann

Markus Aichhorn