Correlated electrons in nonequilibrium

Marcus Kollar

Theoretical Physics III Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg

DFG-Transregio 80 (Augsburg – Munich)

Portorož, June 26, 2012

Outline

- 1. Equilibrium
 - Definition
 - Statistical mechanics
- 2. Nonequilibrium
 - Time evolution of quantum systems
 - Relaxation to new equilibrium
 - Thermalization
- 3. Correlated electrons
 - Hubbard model
 - Sudden interaction quench
 - Pump-probe spectroscopy

1. Equilibrium

- Definition
- Statistical mechanics

Equilibrium: a state of balance

When is a many-body system in equilibrium?

Equilibrium: a state of balance

When is a many-body system in equilibrium?

Thermodynamic equilibrium: no net flow of energy

- thermal equilibrium
- mechanical equilibrium
- chemical equilibrium
- radiative equilibrium

• ...

Equilibrium: a state of balance

When is a many-body system in equilibrium?

Thermodynamic equilibrium: no net flow of energy

- thermal equilibrium
- mechanical equilibrium
- chemical equilibrium
- radiative equilibrium
- ••

Isolated system in equilibrium

Properties described by statistical mechanics

 \Leftrightarrow

Prediction for equilibrium state:

• Fundamental postulate:

All accessible states are equally probable to be observed

Prediction for equilibrium state:

• Fundamental postulate:

All accessible states are equally probable to be observed

 \Rightarrow Expectation value of an observable \hat{A} :

 $\langle \hat{A} \rangle = \frac{1}{Z} \sum_{\substack{n \\ E - \delta E \le E_n \le E}} \langle n | \hat{A} | n \rangle \quad \text{with} \quad \frac{\hat{H} | n \rangle = E_n | n \rangle}{\text{energy} = E = \langle \hat{H} \rangle}$

Prediction for equilibrium state:

• Fundamental postulate:

All accessible states are equally probable to be observed

 \Rightarrow Expectation value of an observable \hat{A} :

$$\langle \hat{A} \rangle = \frac{1}{Z} \sum_{\substack{E-\delta E \leq E_n \leq E}} \langle n | \hat{A} | n \rangle$$

with $\hat{H}|n\rangle = E_n|n\rangle$ energy = $E = \langle \hat{H} \rangle$

• Microcanonical ensemble:

 $\hat{\rho}_{\rm mic} = \frac{1}{Z} \sum_{\substack{n \in E \\ E - \delta E \le E_n \le E}} |n\rangle \langle n|$

$$\Rightarrow \langle \hat{A} \rangle = \mathsf{Tr}[\hat{\rho}_{\mathsf{mic}}\hat{A}]$$

Prediction for equilibrium state:

• Fundamental postulate:

All accessible states are equally probable to be observed

 \Rightarrow Expectation value of an observable \hat{A} :

$$\langle \hat{A} \rangle = \frac{1}{Z} \sum_{\substack{n \in -\delta E \leq E_n \leq E}} \langle n | \hat{A} | n \rangle$$

with
$$\hat{H}|n\rangle = E_n|n\rangle$$

energy = $E = \langle \hat{H} \rangle$

Microcanonical ensemble:

 $\hat{\rho}_{\rm mic} = \frac{1}{Z} \sum_{\substack{n \\ E - \delta E \le E_n \le E}} |n\rangle \langle n| \qquad \Rightarrow \quad \langle \hat{A} \rangle = {\rm Tr}[\hat{\rho}_{\rm mic} \hat{A}]$

• $\hat{\rho} = \hat{\rho}_{mic}$ maximizes entropy: $S = -k_B \text{Tr}[\hat{\rho} \ln \hat{\rho}]$

Prediction for equilibrium state:

• Fundamental postulate:

All accessible states are equally probable to be observed

 \Rightarrow Expectation value of an observable \hat{A} :

$$\langle \hat{A} \rangle = \frac{1}{Z} \sum_{\substack{n \in -\delta E \leq E_n \leq E}} \langle n | \hat{A} | n \rangle$$

with
$$\hat{H}|n\rangle = E_n|n\rangle$$

energy = $E = \langle \hat{H} \rangle$

• Microcanonical ensemble:

 $\hat{\rho}_{\text{mic}} = \frac{1}{Z} \sum_{\substack{n \\ E - \delta E \le E_n \le E}} |n\rangle \langle n| \qquad \Rightarrow \quad \langle \hat{A} \rangle = \text{Tr}[\hat{\rho}_{\text{mic}} \hat{A}]$

• $\hat{\rho} = \hat{\rho}_{mic}$ maximizes entropy: $S = -k_B \text{Tr}[\hat{\rho} \ln \hat{\rho}] = k_B \ln Z$

Generalization:

- Maximize $S = -k_B \text{Tr}[\hat{\rho} \ln \hat{\rho}]$ with constraints
- $[\hat{A}_i, \hat{H}] = 0 \Rightarrow \hat{A}_i \text{ conserved } \Rightarrow \text{ fix } \text{Tr}[\hat{\rho}\hat{A}_i] \stackrel{!}{=} \langle \hat{A}_i \rangle_{t=0}$

 $\Rightarrow \hat{\rho} \propto \exp(-\sum_i \lambda_i \hat{A}_i)$

Boltzmann-Gibbs ensemble

Maxwell 1866, Boltzmann 1872, Gibbs 1878 von Neumann 1927, Jaynes 1957, ..., Balian 1991

Generalization:

- Maximize $S = -k_B \text{Tr}[\hat{\rho} \ln \hat{\rho}]$ with constraints
- $[\hat{A}_i, \hat{H}] = 0 \Rightarrow \hat{A}_i \text{ conserved } \Rightarrow \text{ fix } \text{Tr}[\hat{\rho}\hat{A}_i] \stackrel{!}{=} \langle \hat{A}_i \rangle_{t=0}$

 $\Rightarrow \hat{\rho} \propto \exp(-\sum_i \lambda_i \hat{A}_i)$

Boltzmann-Gibbs ensemble

Maxwell 1866, Boltzmann 1872, Gibbs 1878 von Neumann 1927, Jaynes 1957, ..., Balian 1991

• Canonical and grand-canonical ensembles:

 $\hat{\rho}_{can} \propto \exp(-\hat{H}/(k_B T))$ with T fixed by $\langle \hat{H} \rangle$

 $\hat{\rho}_{\text{gcan}} \propto \exp(-(\hat{H} - \mu \hat{N})/(k_B T))$

with T, μ fixed by $\langle \hat{H} \rangle$, $\langle \hat{N} \rangle$

Generalization:

- Maximize $S = -k_B \text{Tr}[\hat{\rho} \ln \hat{\rho}]$ with constraints
- $[\hat{A}_i, \hat{H}] = 0 \Rightarrow \hat{A}_i \text{ conserved } \Rightarrow \text{ fix } \text{Tr}[\hat{\rho}\hat{A}_i] \stackrel{!}{=} \langle \hat{A}_i \rangle_{t=0}$

 $\Rightarrow \hat{\rho} \propto \exp(-\sum_i \lambda_i \hat{A}_i)$

Boltzmann-Gibbs ensemble

Maxwell 1866, Boltzmann 1872, Gibbs 1878 von Neumann 1927, Jaynes 1957, ..., Balian 1991

Canonical and grand-canonical ensembles:

 $\hat{\rho}_{can} \propto \exp(-\hat{H}/(k_B T))$ with T fixed by $\langle \hat{H} \rangle$

 $\hat{\rho}_{qcan} \propto \exp(-(\hat{H} - \mu \hat{N})/(k_B T))$ with T, μ fixed by $\langle \hat{H} \rangle$, $\langle \hat{N} \rangle$

System in *thermal state* Properties described by $\hat{\rho}_{mic}$, $\hat{\rho}_{can}$, or $\hat{\rho}_{gcan}$

2. Nonequilibrium

- Time evolution of quantum systems
- Relaxation to new equilibrium
- Thermalization

Time evolution of isolated quantum systems

Quantum quench:

- Start with $|\psi_0\rangle$ and switch suddenly to Hamiltonian \hat{H} at t = 0
- Time evolution for $t \ge 0$:

$$|\psi(t)\rangle = e^{-i\hat{H}t} |\psi_0\rangle = \sum_n \langle n|\psi_0\rangle \ e^{-iE_nt} |n\rangle$$

components of wave function oscillate forever

Relaxation to equilibrium state

<u>Relaxation to stationary state?</u> $\langle \hat{A} \rangle_{t \to \infty} \stackrel{?}{=} \text{const}$

 \Rightarrow possible only for large systems

Expectation values:

• Observable \hat{A} :

 $\langle \hat{A} \rangle_t = \langle \psi(t) | \hat{A} | \psi(t) \rangle = \sum_{n,m} c_n c_m^* e^{-i(E_n - E_m)t} \langle m | \hat{A} | n \rangle$

• Time averaging:

$$\overline{\langle \hat{A} \rangle} = \lim_{t \to \infty} \frac{1}{t} \int_0^t \langle \hat{A} \rangle_{t'} dt' = \sum_n |c_n|^2 \langle n|\hat{A}|n\rangle$$

= long-time limit of $\langle \hat{A} \rangle_t$ (if any)

Quenched Bose condensate

Abrupt increase of interaction of ⁸⁷Rb atoms:

Greiner, Mandel, Hänsch, Bloch '02

 $\langle \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}} \rangle$ $|\psi(0)\rangle =$ Bose condensate $t=0\mu s$ $t = 100 \mu s$ $H \approx U \sum \hat{n}_i^2$ $t = 150 \mu s$ $t = 250 \mu s$ $|\psi(t)\rangle = e^{-i\hat{H}t} |\psi(0)\rangle$ oscillates $t = 350 \mu s$ $t = 400 \mu s$ Relaxation 0.6 Column density (a.u 0.4 $\hat{b}^{\dagger}_{\boldsymbol{k}}\hat{b}_{\boldsymbol{k}}$) _{Ncoh/Ntot} $t = 550 \mu s$ collapse and revival 1,000 3,000 0 2,000 t (us)

Thermalization

Equilibration to thermal state = 'thermalization'

• Thermal state = prediction of statistical mechanics:

$$\langle \hat{A} \rangle_{t \to \infty} = \sum_{n} |c_{n}|^{2} \langle n | \hat{A} | n \rangle \stackrel{?}{=} \langle \hat{A} \rangle_{\text{mic/can/gcan}}$$

Thermalization

Equilibration to thermal state = 'thermalization'

• Thermal state = prediction of statistical mechanics:

$$\langle \hat{A} \rangle_{t \to \infty} = \sum_{n} |c_{n}|^{2} \langle n | \hat{A} | n \rangle \stackrel{?}{=} \langle \hat{A} \rangle_{\text{mic/can/gcan}}$$

- Thermalization is possible:
 - if only $\langle \hat{H} \rangle$ and $\langle \hat{N} \rangle$ are relevant, not all details of $|\psi(0)\rangle$
 - for sufficiently complicated \hat{H}
 - for not too correlated \hat{A}

Thermalization

Equilibration to thermal state = 'thermalization'

• Thermal state = prediction of statistical mechanics:

$$\langle \hat{A} \rangle_{t \to \infty} = \sum_{n} |c_{n}|^{2} \langle n | \hat{A} | n \rangle \stackrel{?}{=} \langle \hat{A} \rangle_{\text{mic/can/gcan}}$$

- Thermalization is possible:
 - if only $\langle \hat{H} \rangle$ and $\langle \hat{N} \rangle$ are relevant, not all details of $|\psi(0)\rangle$
 - for sufficiently complicated \hat{H}
 - for not too correlated \hat{A}
- Thermalization apparently depends:
 - on interaction strength
 - on integrability (# of constants of motion)

Kollath, Läuchli, Altman '07 Manmana et al.'07 Cramer et al.'08 Rigol, Dunjko, Olshanii '08 Moeckel & Kehrein '08, '09 Barmettler et al. '08 Rossini et al. '08 Eckstein, Kollar, Werner '09

. . .

Quantum Newton's cradle

lack of thermalization due to (near-)integrability

Integrable vs. nonintegrable systems

Integrable systems: $\hat{H}_{eff} = \sum_{\alpha=1}^{L} \epsilon_{\alpha} \hat{n}_{\alpha} \Rightarrow$ many constants of motion

- much fewer accessible states!
- Generalized Gibbs ensembles: $\hat{\rho}_{GGE} \propto \exp(-\sum_{\alpha} \lambda_{\alpha} \hat{n}_{\alpha})$
- $\langle \hat{A} \rangle_{t \to \infty} = \langle \hat{A} \rangle_{GGE}$ for certain \hat{A} and $|\psi(0)\rangle$

Girardeau '69 Rigol et al. '06 Cazalilla '06 Rigol et al.'07 Barthel & Schollwöck '08 Kollar & Eckstein '08

Integrable vs. nonintegrable systems

Integrable systems: $\hat{H}_{eff} = \sum_{\alpha=1}^{L} \epsilon_{\alpha} \hat{n}_{\alpha} \Rightarrow$ many constants of motion

- much fewer accessible states!
- Generalized Gibbs ensembles: $\hat{\rho}_{GGE} \propto \exp(-\sum_{\alpha} \lambda_{\alpha} \hat{n}_{\alpha})$
- $\langle \hat{A} \rangle_{t \to \infty} = \langle \hat{A} \rangle_{GGE}$ for certain \hat{A} and $|\psi(0)\rangle$

Nonintegrable

Contributions to long-time average: $\langle \hat{A} \rangle = \sum |c_n|^2 \langle n | \hat{A} | n \rangle$ Integrable

Rigol, Dunjko, Olshanii '08

Girardeau '69 Rigol et al. '06 Cazalilla '06

Rigol et al.'07

Barthel & Schollwöck '08

Kollar & Eckstein '08

Thermalization in nonintegrable systems

Eigenstate thermalization hypothesis:

Srednicki '95,'99 Rigol, Dunjko, Olshanii '08

• Long-time average $\langle \hat{A} \rangle = \sum_{n} |c_n|^2 \langle n | \hat{A} | n \rangle$

•
$$|c_n|^2$$
 is peaked at $E_n = E = \langle \hat{H} \rangle$

• Hypothesis: $\langle n | \hat{A} | n \rangle \approx \mathcal{A}(E_n)$ depends only on E_n

Thermalization in nonintegrable systems

Eigenstate thermalization hypothesis:

Srednicki '95,'99 Rigol, Dunjko, Olshanii '08

• Long-time average $\langle \hat{A} \rangle = \sum_{n} |c_n|^2 \langle n | \hat{A} | n \rangle$

•
$$|c_n|^2$$
 is peaked at $E_n = E = \langle \hat{H} \rangle$

• Hypothesis: $\langle n | \hat{A} | n \rangle \approx \mathcal{A}(E_n)$ depends only on E_n

$$\Rightarrow \langle \hat{A} \rangle_{\mathsf{mic}} = \frac{\sum_{\substack{n \\ E - \delta E \leq E_n \leq E}} \langle n | \hat{A} | n \rangle}{\sum_{\substack{n \\ E - \delta E \leq E_n \leq E}} 1} = \mathcal{A}(E) + \mathcal{O}(\delta E) \simeq \overline{\langle \hat{A} \rangle} \checkmark$$

• Hypothesis verified numerically, related to typicality/ergodicity

3. Correlated electrons

- Hubbard model
- Sudden interaction quench
- Pump-probe spectroscopy

Hubbard model

Single-band Hubbard model:

Gutzwiller '63; Kanamori '63; Hubbard '63

$$H = \sum_{ij\sigma} V_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$
$$= \sum_{k\sigma} \epsilon_{k} \hat{c}_{k\sigma}^{\dagger} \hat{c}_{k\sigma}$$
band structure

 \Rightarrow Mott metal-insulator transition at $U = U_c \sim \mathcal{O}(\text{bandwidth})$ Mott '49

Hubbard model

Single-band Hubbard model:

Gutzwiller '63; Kanamori '63; Hubbard '63

$$H = \sum_{ij\sigma} V_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$
$$= \sum_{k\sigma} \epsilon_{k} \hat{c}_{k\sigma}^{\dagger} \hat{c}_{k\sigma}$$
 band structure

 \Rightarrow Mott metal-insulator transition at $U = U_c \sim \mathcal{O}(\text{bandwidth})$

Fermi liquid: quasiparticle excitations

 $0 < U < U_c$ n_k T=0 T>0 kFermi liquid

Landau '56

Mott '49

Dynamical mean-field theory for nonequilibrium

DMFT in equilibrium: "integrate out the lattice"

• Exact for dimension $d = \infty$

Metzner & Vollhardt '89, Georges et al. RMP '96

Mapped onto single-site problem + self-consistency

Brandt & Mielsch '89, Georges & Kotliar '92

Conserving approximation; no lattice finite-size effects

DMFT for nonequilibrium:

• Similar, but G(t, t') instead of G(t - t')

Schmidt & Monien '02 Turkowski & Freericks '05 Freericks, Turkowski & Zlatić '06 Eckstein & Kollar '08 Tsuji, Oka & Aoki '08

Interaction quench in the Hubbard model

Hubbard model:Bandwidth = 4V, density n = 1, $U_c = 4.8V$, $T_c = 0.05V$ Quench from U = 0 to U = 2V:Eckstein, Kollar, Werner '09, '10

Slow relaxation: Prethermalization plateaus due to vicinity of free system (U = 0) Moeckel & Kehrein '08 Uhrig '09

⇒ plateaus are also predicted by perturbed GGEs Kollar, Wolf, Eckstein '11

Interaction quench in the Hubbard model

Hubbard model:Bandwidth = 4V, density n = 1, $U_c = 4.8V$, $T_c = 0.05V$ Quench from U = 0 to U = 5V:Eckstein, Kollar, Werner '09, '10

Persisting *collapse-and-revival* oscillations due to vicinity of atomic limit ($U = \infty$)

Interaction quench in the Hubbard model

Hubbard model:Bandwidth = 4V, density n = 1, $U_c = 4.8V$, $T_c = 0.05V$ Quench from U = 0 to U = 3.3V:Eckstein, Kollar, Werner '09, '10

Fast thermalization at intermediate U: both prethermalization and oscillations disappear at $U_c^{dyn} \approx 3.2V$

Different regimes of interaction strength

Thermalization delayed near integrable points due to approximate constants of motion

Different regimes of interaction strength

Thermalization delayed near integrable points due to approximate constants of motion

Possible explanations of dynamical critical points:

- Variational wave functions: Schiró, Fabrizio '11 dynamics change qualitatively at U_c (here $U_c \approx 3.4$ V)
- Dynamical phase transitions:

cusps develop in $\langle \psi(0) | e^{-i\hat{H}t} | \psi(0) \rangle$ for quench across QCP

Heyl, Polkovnikov, Kehrein '12

Pump-probe spectroscopy

The pump-probe setup:

- pump laser pulse: puts system into a nonequilibrium state
- probe laser pulse: looks at response of system after delay time t_d

- Time-resolved photoemission spectroscopy / optical spectroscopy analyze emitted electrons / transmitted light
- Time-resolved x-ray diffraction / electron diffraction determine structural dynamics

Ex.: Photoemission spectroscopy on 17-TaS₂

Ex.: Photoemission spectroscopy on 1*T***-TaS**₂

Closing of CDW gaps below Fermi energy:

Petersen, Kaiser, Dean, Simoncig, Liu, Cavalieri, Cacho, Turcu, Springate, Frassetto, Poletto, Dhesi, Berger, Cavalleri '11 30-fs pump pulse (1.2 eV), 30-fs probe pule (20.4 eV)

Photoemission: "Sudden Approximation"

Intensity of photoelectrons:

$$I(\hat{\boldsymbol{k}}_{e}, E_{\text{kin}}; \boldsymbol{q}, t_{d}) = \frac{dN(\hat{\boldsymbol{k}}_{e}, E_{\text{kin}}; \boldsymbol{q}, t_{d})}{d\Omega_{\hat{\boldsymbol{k}}_{e}} dE_{\text{kin}}}$$

Sudden approximation: Coherent transfer to vacuum state

Neglect matrix element effects:

$$I(\hat{k}_{e}, E_{kin}; \boldsymbol{q}, t_{d}) \propto \sum_{\boldsymbol{k}\sigma} \delta_{\boldsymbol{k}_{||}+\boldsymbol{q}_{||}, \boldsymbol{k}_{e||}} \mathbf{I}_{\boldsymbol{k}\sigma}(E_{kin} - E_{photon} - \Phi; t_{d})$$

$$\mathbf{I}_{\boldsymbol{k}\sigma}(\omega; t_{d}) = -i \int dt \int dt' \underbrace{S(t)}_{\boldsymbol{k}\sigma} S(t') e^{i\omega(t'-t)} G_{\boldsymbol{k}\sigma}^{<}(t+t_{d}, t'+t_{d})$$
pulse envelope
Freericks, Krishnamurthy, Pruschke '08

Photoemission: "Sudden Approximation"

Intensity of photoelectrons:

$$I(\hat{\boldsymbol{k}}_{e}, E_{\text{kin}}; \boldsymbol{q}, t_{d}) = \frac{dN(\hat{\boldsymbol{k}}_{e}, E_{\text{kin}}; \boldsymbol{q}, t_{d})}{d\Omega_{\hat{\boldsymbol{k}}_{e}} dE_{\text{kin}}}$$

vac. states

Ekin

Sudden approximation: Coherent transfer to vacuum state

Neglect matrix element effects:

$$I(\hat{k}_{e}, E_{kin}; \boldsymbol{q}, t_{d}) \propto \sum_{\boldsymbol{k}\sigma} \delta_{\boldsymbol{k}_{||}+\boldsymbol{q}_{||}, \boldsymbol{k}_{e||}} \mathbf{I}_{\boldsymbol{k}\sigma}(E_{kin} - E_{photon} - \Phi; t_{d})$$

$$\mathbf{I}_{\boldsymbol{k}\sigma}(\omega; t_{d}) = -i \int dt \int dt' \underbrace{S(t)}_{\boldsymbol{k}\sigma} S(t') e^{i\omega(t'-t)} G_{\boldsymbol{k}\sigma}^{<}(t+t_{d}, t'+t_{d})$$
pulse envelope
Freericks, Krishnamurthy, Pruschke '08

Limited resolution:

energy uncertainty $\delta E \approx \hbar/\delta \iff$ pulse duration δ

Spectrum of an excited Mott insulator

Mott-Isolator (Falicov-Kimball model, $V_{ij\downarrow} = 0$, U = 10V)

pumped into metallic state (U = 1V):

Eckstein & Kollar '08

⇒ collapse and revival oscillations in Mott gap

Summary

Thermalization in isolated many-body systems

- Thermalization delayed for very small/large interaction
- Fast thermalization for intermediate interaction possible

Pump-probe spectroscopy on correlated systems:

- Photodoping: spectral weight transfer
- Photoemission: energy-time limitations

More on nonequilibrium:

- Exp.: C.Giannetti, D.Fausti, F.Novelli, M.Mitrano, R.Singla, ...
- Theory: M.Schiró, A.Amaricci, M.Nuss, ...